
CHAPTER 1

ANTENNA STRUCTURE FUNDAMENTALS

Much of the world around us is affected by wave phenomena,
which are often characterized by frequency (number of waves per
unit of time) and wave length. Frequency and wave length are
related by the speed with which waves propagate through the
various media. For example, the speed of electromagnetic wave
prOpag?itiOn hi free space is about 1.182 x 101° inches per
second. Therefore the wave length for the frequency of 1 x 109

cycles per second (1 GHz) is 1.182 x 101°/ 1 x 109 or 11.8 inches
(in metric units, the speed is about 3 x 10II mm per second, so
that the wavelength at 1 GHz is about 300 mm ). The rule is that
electromagnetic wavelengths are about 11.8 inches (300 mm) per
GHz .

The frequencies relevant to large-diameter antennas are in
the microwave band of from 2 to 100 GHz, thus the wavelengths are
from about 6 inches to 1/8 of an inch (150 mm to 3 mm).
Microwave frequencies are higher than radio and television
frequencies and are lower than the infrared, optical, and gamma
ray frequencies at the progressively higher electromagnetic
bands. The microwave antennas that are considered here have
diameters of from as small as 10 meters to as large as 100
meters, and are used for a multitude of communications and radio
astronomy applications from ground and space communications to
deep space exploration.

Microwave antennas require surface reflection accuracies of
from one-twelfth to one-fiftieth of a wavelength. This means
that the ratio of accuracy to structure size for microwave
antennas greatly exceeds that of customary civil-engineered
buildings or bridges. Although design and analysis of these
antennas is a formidable engineering challenge, precise
techniques are available for designing and analyzing antenna
structures on both component and system levels.

This chapter provides an overview of the physical antenna
system. Antenna structures for microwave energy transmission and
collection have evolved from primitive pre-World War II era
configurations to high-performance antennas of today. This
evolution has led from polar mount hour-angle and declination
(HA-dec) configurations to the more modern azimuth-elevation (az-
el) antennas. The relatively newer beam-waveguide antennas use a
modified az-el antenna optical system. Another variation is an
offset “clear-aperture” antenna. Offset antennas avoid a
blocking ~tshadow effectti of subreflector and subreflector
supports, but their construction is more complex. Therefore,
non-offset, symmetrical antennas predominate. Dual-reflector
systems, either offset or symmetrical, have subreflectors in
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addition to main reflectors, and feedhorns that transmit or
receive energy to or from the subreflector. An advantage of
dual-reflector systems is an associated magnification factor that
effectively amplifies the physical focal length. “Cassegrain”
and “Gregorian~r systems are the two arrangements that use dual
reflectors. Both of these exploit specific useful properties of
conic section curves.

1.1 BACKGROUND “

Heinrich Hertz discovered radio waves in 1888. Six
years later, the field of radio astronomy originated with Oliver
Lodgels speculation of the existence of radiation from the sun
(Ref. 1.1). In 1932, Karl Jansky first detected electromagnetic
radio waves of extraterrestrial origin (Ref. 1.2). Jansky’s
antenna was an array of aerials arranged on a rotating wooden
platform about 30 meters long. In 1937, Grote Reber was
motivated by JanskySs work to build a single-axis rotatable 30-
foot-diameter parabolic antenna (Ref. 1.3). Reber~s backyard
antenna was built primarily from wooden 2 x 4s; the reflecting
surface was galvanized iron sheet metal. Figure 1-1 is a
reconstruction of the antenna that is located at the entrance to
the National Radio Astronomy Observatory in Greenbank, West
Virginia.

Reber was able to confirm Jansky~s detection and also to
construct a sky map of the strength of radio emissions (Ref.
1.4). As Sir Bernard Lovell commented, ‘lWhen one remembers that
Reber was a lone hand working in his spare time his achievement
stands out as altogether remarkable.11 Lovell himself was
responsible for developing the 250-foot-diameter steerable
azimuth and elevation axes antenna at Jodrell Bank in England.
This antenna, shown in Figure 1-2, was completed in 1957 under
the sponsorship of the University of Manchester. The structural
configuration has accordingly been called a ~iManchester Mount.$’
At that time this design seemed a reasonable way to prc>vide
azimuth and elevation axis motions, although it has rarely been
adopted in later antennas. The Jodrell Bank antenna secured its
place in history when it tracked the Russian Sputnik satellite in
1957, and was the worldls largest steerable antenna until the
completion of the 100-meter antenna at Effelsburg, Germany, in
1973.

The worldls largest antenna is currently the 1000-foot-
diameter aperture spherical bowl at Arecibo, Puerto Rico. This
antenna was built in the early 1970s and features a fixed
reflecting surface with a movable feed which is suspended above
the surface by cables to provide microwave beam steering. It is
unlikely that antennas as large or larger than those already in
service will be built in the future. The now-established trend
is to operate arrayed groups of smaller diameter antennas (say,
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30 to 34-meter diameters). One exception to this is an
innovative 100-meter-diameter antenna that is scheduled for
completion in the 1990s at the National Radio Observatory site at
Greenbank, West Virginia.

The understanding, technology, and interest in parabolic
antennas grew rapidly, and in the decade following the completion
of the Jodrell Banks antenna there were 64-meter-diameter
antennas at Parks, Australia, and Goldstone, California. Other
operating installations included a 300-foot-diameter antenna at
Greenbank, West Virginia, a 150-foot-diameter antenna at Wallops
Island, Virginia, and several 85-foot- to 90-foot-diameter
antennas throughout the world. Although never completed, a 600--
foot-diameter steerable antenna was conceptualized and partly
designed. Although these ultra-large antennas do not necessarily
meet the precision surface accuracy desired for the more recent
shorter wavelength missions, many of these antennas have had an
operational lifespan of more than 30 years and are continuing to
provide useful service.

1.2 CURRENT ANTENNA CONFIGURATIONS

Figure 1-3 shows a 34-meter antenna configuration
typical of many operating antennas: an $Iaz-el, Cassegrain, wheel
and track.” The term ‘Iwheel and track~t refers to the azimuth
bearing. This consists of sets of wheels at the base of the
structure that roll on a steel plate track that is supported by a
circular concrete foundation ring. “Az-el” denotes an azimuth
axis of rotation below an (orthogonal) elevation axis of
rotation. The astronomer~s  ~lalt-az~l mount implies essentially
only a substitution of ~laltitude~l for “elevation”. The term
“Cassegrain”  refers to a microwave optical system that contains a
subreflector  between the antenna surface and the focal point. In
contrast, a Gregorian antenna places the subreflector on the far
side of the focal point. This entails a disadvantage in
requiring a longer structure to support the subreflector in
addition to some optical restrictions. Consequently the
prevalent microwave antenna system by far is the Cassegrain;  thus
it receives the most attention in this book.

Cassegrain (and Gregorian) systems use microwave feeds that
are located above the reflecting surfaces and are usually held in
place by feedcone structures. Both are IIdual reflector~l systems
because of the use of a subreflector in addition to the main
reflector. An alternative optical system dispenses with
subreflectors  and places the feed at the focal point (!~focal
feed~l) . The subreflector in the first two cases, and the feed in
the third case, is held in place by structural leg assemblies
that usually are either tripods (three legs) or quadripods (four
legs) . Quadripods are the most common.
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1.3 GROUND ANTENNA COMPONENTS

Figure 1-4 is a sideview sketch that shows the main
components of a 34-meter az-el antenna. This is a dual-reflector
system that includes a Cassegrain subreflector in conjunction
with a parabolic main reflector. The structure is essentially
symmetrical with respect to the plane of the sketch.

103.1 YIPD
, ina Structure (refer to Figure 1-4)

The dish surface panels, backup structure,
subreflector, feedcone, quadripod, and elevation wheel constitute
the tipping structure, which is subject to the tipping motions
associated with rotations of the antenna’s elevation axis.

Panels. The microwave reflecting surface for the antenna
shown in the figure is made up of about 500 high-precision
surface panels. These are Ctparasitictl elements that are designed
to support only the local loads of their surfaces and are not
intended to participate in the main structural action. The
panels are held in place by individual adjustable jack~: so that
they can be precisely positioned at installation time.

packuD Structure. The backup structure is a three-
dimensional trusswork that provides the foundation for the panel
jacks and is the key element in supporting the external
environmental and internal self-weight loads that act on the
system. Analysis and design of this structure will be the
subject of most of the attention in subsequent chapters. The
backup structure also supports the feedcone and the bases of the
quadripod legs

Subreflector, The subreflector is supported from the apex
of the quadripod by a positioning mechanism. This mechanism
adjusts the location of the subreflector to compensate for the
structural deflections of backup structure and subreflector
support legs under loading conditions.

Feedcone. The feedcone contains the feed, which is a
microwave device that directs the energy towards the subreflector
during microwave transmission or collects the energy from the
subreflector during reception. The two major additional paths in
the microwave system are between the subreflector and main
reflector and from the main reflector out to space. The
microwave energy paths during transmission or during receive
modes are essentially the same and differ only in direction.

guadri~od. The quadripod in the figure is attached
directly to the backup structure at the reflector surface. Each
leg has a trapezoidal cross-section, with plane trusses (which
are seen in the figure) forming the two long sides and solid
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plates forming the two shorter sides. The legs are joined at
their apex by a 3-dimensional truss structure.

mevation wheel. The elevation wheel is attached to the
backup structure. The wheel establishes the elevation position
under command of the elevation drive and control system. The
wheel contains gear teeth at its rim that engage with an
elevation drive pinion(s). The elevation drive pinion is at the
output end of a gear box assembly that is powered by the
elevation motor(s). The elevation drive for this antenna is
supported at the upper end of a long tangent link. The tangent
link is supported at its base by a pivot on the alidade. The
interior portion of the elevation wheel in the vicinity of the
rim contains the counterweights, which can be of concrete, steel,
or lead, depending upon the availability of the space for
packaging and the leverage in balancing the weight of the
rotating structures with respect to the elevation axis.

1.3.2 Alidade and Azimuth Drive

The alidade supports the elevation bearings and the
elevation drive and pinion. Two elevation bearings at opposite
ends of an elevation axis and the elevation wheel pinion provide
the entire support for the tipping structure.

The alidade shown in Figure 1-4 has a wheel and track
azimuth bearing system that provides the rotation about a
vertical axis. The alidade corners are.supported on wheeled
carriage (truck) assemblies that roll upon a precisely aligned
steel track. The steel track rests on a massive circular
concrete foundation. The azimuth drive consists of one or more
assemblies of a motor, brake, gear reducer assembly, and output
pinion, all located at one or more carriages. The wheel and
track assembly is ordinarily incapable of resisting the lateral
environmental forces on the system, thus it is customary to
provide a central pintle bearing to stabilize the base of the
alidade for lateral forces. The antenna shown here has a pintle
bearing on top of a concrete foundation pit. The pit contains a
cable wrap-up device to accommodate the motions of the many
electrical and microwave cables and conduits during azimuth
rotation.

An alternative and frequently employed type of azimuth
drive system uses a large-diameter azimuth bearing located at the
top of a pedestal. The pedestal, typically constructed of
reinforced concrete, is high enough to allow the antenna rim to
clear the ground at low elevation attitudes. The alidade for
this type of drive is lower than the for the wheel and track
arrangement because some of the height requirement is shared by
the pedestal. Figure 1-5 shows the arrangement; the antenna is
NASA~s 70-meter antenna at Goldstone, California. The azimuth
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bearing for a moderate sized antenna, say up to 25 meters in
diameter, could be a type of ~’frictionless” steel roller bearing,
depending upon maximum sizes that can be manufactured, shipped,
and field-assembled. In the case of very large-diameter
antennas, such as the 70-meter antenna, a hydrostatic azimuth
bearing is employed. The alidade floats on pressurized steel
pads over a pool of oil. A separate radial bearing counteracts
lateral loads on the tipping structure. The elevation drive here
consists of motors and gearboxes that are mounted on an alidade
platform. The output pinion of each gearbox engages directly
with the elevation wheel gear.

Precise shaft angle transducers, such as encoders, ar@
frequently used to supply elevation and azimuth positioning.
Alternative positioning devices that have been used or have been
given serious consideration include gyros and various
triangulation schemes.

1.4 ALTERNATIVE CONFIGURATIONS

1.4.1 Polar Axis Antennas

The hour-angle and declination (HA-dec) axis antenna is
one alternative to the az-el axis antenna. The hour-angle axis
is the outermost axis; it is a polar axis that points to the
North or South Pole, depending upon the hemisphere. The azimuth
or polar wheel is in the plane perpendicular to the polar axis
and is thus parallel to the equatorial plane. The declination
axis is the inner axis and is carried on the hour-angle wheel.
The declination axis is orthogonal to but does not intersect the
polar axis. The antenna tipping structure pivots on the
declination axis and a second tipping motion that includes the
declination wheel is imparted by rotations of the polar axis. In
the centered position (at the mid position of the declination
wheel) , the antenna pointing axis is in a plane parallel to the
equatorial plane. Figure 1-6 shows the features of a HA-dec
antenna orientation. In this figure @ is the local latitude, t.
is the hour angle, and 8 is the declination angle (the antenna is
shown at zero declination). The position of a celestial object
is determined by the rotation t of the hour-angle wheel and the
rotation ~ of the declination wheel.

To convert from an HA-dec coordinate system to an az-el
coordinate system the elevation angle a can be determined from:

sin a = sin 5 sin @ + cos b cos 0 cos t [1.1]

and the azimuth angle A can be determined from

cos A = (sin 6 cos@- cos 5 sin @ cos t)/cos u [1.2]
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These equations
and declination for known
angles as follows:

sin 5= sin @ sin u+

and

can be solved to provide the hour-angle
latitude and azimuth and elevation

cos @cos aces A [1.3]

Cos t = (sin ct-sinb sin @)/(sin 3cos@) [1.4]

Figure 1-7 is a photograph of a 34-meter HA-dec
antenna. The hour-angle wheel is shown almost face-on in the
photograph and the upper extremities of this wheel support the
declination axis bearings. The declination wheel occupies the
space cut out from the hour-angle wheel in the center and just
above the polar axis.

An X-Y antenna is a variation of the HA-dec antenna
that is equivalent to a HA-dec antenna for which the polar axis
is depressed to the horizontal. The X-Y antenna is sometimes
preferable to an az-el system when it becomes important to track
an object that passes directly overhead--an operation that is not
readily performed by an az-el system. There have been designs
where a third, cross-elevation, axis was added to az-el antennas
to overcome ‘Izenith passtt difficulties.

In the early antenna days, astronomers preferred HA-dec
antenna configurations because they eliminated the need to
convert from az-el coordinates to astronomy coordinates.
Nevertheless, complexities of the structure associated with the
HA-dec arrangement resulted in significant disadvantages. The
task of transforming to astronomical coordinates became trivial
in the 1960s with advances in computational capabilities.

1.4.2 Beam-Waveauide Antennas

A beam-waveguide antenna is a variation of an az-el
Cassegrain antenna optical system in which the feed is at the
bottom of the alidade or possibly below ground in a basement. A
set of additional secondary mirrors, some flat and somecurved,
route the microwave energy to the feed. Except for the one
mirror closest to the surface, which is required to rckate in
elevation with the tipping structure, the secondary mj.rrors can
all be fixed to the alidade. Some of the advantages c)f the beam-
waveguide antenna are the simplicity of servicing the feed
because of improved accessibility, the ease of changing feeds for
varying microwave purposes, and the advantage of the feed being
situated in a protected indoor environment. However, there are
some disadvantages, including loss of microwave efficiency
because of the additional reflections and the longer path from
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subreflector to the feed, and the extra effort and difficulty
involved in accurately aligning the added mirrors. The
particular microwave functions planned for an antenna ultimately
determine the suitability of the beam-waveguide system. A
schematic of a beam-waveguide antenna optical arrangement is
shown in Figure 1-8.

1.4.3 Offset Antennas

The reflecting surface of a conventional Cassegrain
antenna is partly blocked by the ,subreflector and subreflector
support. Reduction of the effective aperture by the blocking
shadow can degrade antenna efficiency by from 3 to 8 percent.
The offset antenna eliminates this blocking by placing the
subreflector and supports just past the edge of the aperture.
Figure 1-9 shows the configuration.

A problem with this configuration is that the antenna
structure is asymmetrical and therefore not as simple to design
and build. Consequently, there are application-depenclent
tradeoffs between the improvements in microwave efficiency and
the penalties from the offset structure. For many years the
largest two-axis steerable offset antenna in the United States
had only a 10-.meter diameter.

1.5 CONIC SECTION GEOMETRY

Antenna surfaces are formed by the rotation of a plane conic
section curve about a focal axis--thus the surfaces generated are
parabolas, hyperbolas, or ellipses of revolution. Parabolic
surfaces are used for main reflectors, and the hyperbolic and
elliptical surfaces are used for the subreflectors of dual-
reflector Cassegrain and Gregorian systems, respectively. The
three basic plane curves are shown on Figure 1-10.

The two-dimensional equations of the three plane curves are
represented in a rectangular coordinate system in terms of the
focal axis direction z and the lateral direction r. The curves
can be represented in a polar coordinate system in terms of the
focal radiusp and the angle from the focal axis ~. The three-
dimensional surfaces of revolution can be developed in a
Cartesian X,Y,Z coordinate system by treating r as the radius c~f
revolution and then replacing each radius by its projections on
the X and Y axes.

The equations of the curves in rectangular and polar
coordinates are:
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werbola
Semi-transverse axis a, semi-conjugate axis b, focal length
c=(a2+b2)l’2. The asymptotes pass throu h the origin of coordinates
at the angles with tangents equal to ?1b/a .

[1.6a]

,b2
‘=a+c cos~

[1.6b]

Ell ime
Semi-major axis a, semi-minor axis b, focal length c=(a2-b2)l’2

~2+ *2
—=1

> b2
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“a+c cos~

Special properties of these curves
optical systems are:

[l*7a]

[1.7b]

that make them useful in

Parabola
A normal(vector) to the curve bisects the angle between a
line parallel to the focal (Z) axis and the focal radius.
Therefore, incident rays parallel to the focal axis are
reflected toward the focal point. Conversely, rays
emanating from the focal point emerge as rays parallel to
the focal axis after reflection.

~v~erbola
The normal to the curve at every point bisects the angle
between the two focal radii at the point. Consequently, a
ray towards one focal point that is intercepted by the
nearest branch of the hyperbola is reflected toward the
opposite focal point.
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The hyperbola is the locus of points for which the
difference in the length of the focal radii is ccmstant.
This difference is 2a.

mlime
The normal to the curve bisects the angle between the focal—-..
radii (similar
from one focal

The ellipse is
the lengths of

In the special

to the hyperbola). Consequently, all rays
point will be reflected to the other.

the locus of all points for which the sum of
the focal radii is constant. This sum is 2a.

cases of ‘tshaped” antennas, the basic
surfaces are fiodified by small perturbations from the ideal conic
equation. Nevertheless, the perturbations are typically so small
that they can be ignored in structural design and surface
deformation analysis. It will be seen in Chapter 2 that the
original surface shape affects deformation analysis only through
the direction cosines of this surface. The perturbations with
respect to an idealized nearby approximating conic surface have
an insignificant influence upon these direction cosines.

1.6 DUAL-REFLECTOR OPTICAL ARRANGEMENTS

1.6.1 Casseurain and Greuorian Systems

Cassegrain and Gregorian configurations are shown in
Figure 1-11. The Cassegrain system in Figure l-ha employs a
parabolic main reflector and a hyperbolic subreflector. The
subreflector is positioned between the main reflector and its
focal point. This main reflector focal point is really a
~lvirtual~l  focus because of the presence of the subreflector. The
Gregorian system (Figure l-llb) has a parabolic main reflector
and an elliptical subreflector on the far side of the main
reflector focal point. The feeds for both Cassegrain and
Gregorian systems are placed at the remote focal points with
respect to the subreflector. Both systems capitalize upon the
special reflective properties that were described above for
parabolas, hyperbolas, and ellipses. The aperture planes and
focal planes, shown on edge in the figure, are parallel planes;
the aperture plane is tangent to the main reflector at the vertex
and the focal plane contains the main reflector focal point.

1.6.2 ~aanification Factor

It can be seen for the Cassegrain system (Figure l-ha)
that the aperture angle ~ at the main reflector virtual focus is
larger than angle a, which illuminates the subreflector from the
second hyperbola focal point (at the feed). If there were no
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subreflector,  as in the case of a focal point feed antenna, the
feedhorn would need to be designed to illuminate the angle 2P.
Here, in the Cassegrain case, the feed illuminates the much
smaller angle 2ct. This smaller illumination angle requirement
provides some advantages for the microwave system.

Hannan, in Ref. 1.5, postulated that there is an equivalent
focal point feed parabola of the same diameter D, but with longer
focal length, for which the feed angle would also be 2a. The
original and equivalent parabolas are shown on Figure 1-12. The
magnification factor M is defined as the ratio of the focal
le~gth F* of the equivalent parabola to the focal length F of the
original
given by
half the

parabola, ‘so that 1? = MF. Hannan showed that M is
the ratio of half the tangent of the aperture angle to
tangent of the feed angle. That is

M = (tan * P)/(tan *a) [1.8]

In terms of the hyperbola parameters c and a (Eq. [1.6]),
the magnification factor can be shown to be

M= (c+a)/(c-a) [1.9]

Typical values of M are in the range of from four to ten for
antennas with focal length-to-diameter ratios (F/D) in the range
of from 0.25 to 0.50. This implies subreflector diameter-to-main
reflector diameter ratios of about one to ten. The magnification
factor will be encountered in a later chapter in conjunction with
antenna boresight pointing.

1.6.3 Offset Antenna Geometrv

The layout of an offset parabolic antenna is equivalent
to that of a large diameter ‘tparent’t reflector from which a .
smaller circular region on one side and beyond the center of the
parent is used as the reflecting surface. The subrefl.ector is
inside of the space between the center of the parent and the
nearest rim of the aperture. Figure 1-13 shows the projection of
an offset antenna on the aperture plane. In the figure, ~ is
the radius of the parent, R. is the aperture radius of the offset
antenna, YO is the offset between the center of aperture and the
center of the parent, and A is the dimension from center of
parent to the nearside rim of the aperture.

The equation of the aperture projection is

X 2 +(y-Yo)2 =R.2 [1.10]
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and the equation of the reflector
of Eq. [1.5a] with origin shifted
is

z = g +(Y+Yo~
4F

surface, which is an extension
to the center of the aperture,

[1.11]

Equations [1.10] and [1.11] are based on a right-handed
Cartesian coordinate system in which x, y, and z are the
coordinates of a point in the directions of the X, Y, and Z axes.
The orientation of the X and Y axes are as shown in Figure 1-13:
the Z axis is positive when pointing upward from the aperture
plane. 1 As a consequence of the right-handed system, the
positive direction of the Z axis is always upward above the main
reflecting surface.

Figure 1-14 shows a profile of the surface along the Y axis.
Three sets of axes are shown: The Y and Z set of axes are those
for the parent parabola, the YI and Zlaxes are parallel to the Y

Y2/4F (Eq. [1.5a]), andand Z set but offset by YO and ZO where Z.= .
the Y~ and Z~ axes relate to a local coordinate system in which
the Y~ axis is tangent to the surface at point pl (which is on
the centerline of the offset aperture). The angle between the
lILS1 and the ~llt! coordinate systems is $,, in which $.=tan-lYO/2F.
The X axis coordinates are the same for all three systems.

One property of a parabola of revolution is that the curve
of intersection with any right circular cylinder with an axis
offset from, but parallel to, the focal (Z) axis is a plane
ellipse. When r is the radius of the cylinder, the semi major
axis of the ellipse is r/cos$~ and the semi minor axis is r. The
planes of intersection of all such cylinders whose axes coincide
with the ZI axis of Figure 1-14 are parallel, and the centers of
the ellipses contained in these planes have ZI coordinates equal
to r2/4F. A true view of the curves of intersection is given by
the projections in the X-Y~ coordinate plane. The coordinates of
the centers of the intersection curves in the local coordinate
system are O, r2/4F sin$,, r2/4F cos $..

According to the above, when the cylinder encloses the
offset aperture, the major axis is R./cos$,, the minor axis is 1?.
(in the X direction), and the center of the ellipse has ZI =
Ra2/4F. The center of this ellipse in the local system has
coordinates O, RA

2 sin&/4F, and R2

A cos $./4F. More explicitly,

lThis coordinate system is used throughout the text for az-
el antennas. The convention is that the X axis is always
horizontal and parallel to the elevation axis and the Y axis is
positive upward when the antenna is facing the horizcm.
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in terms of the points noted in Figure 1-14, the center of the
ellipse has coordinates given by the distances O, pl-p(j, P6-P4.

This ellipse lies in the plane perpendicular to the plane of the
figure that contains the points p~, p,, and PS.

Figure 1-15 shows an offset antenna that has been
intersected by 12 cylinders with equally spaced radii. Figure
l-15a is a 3-dimensional view in the X-Y-Z coordinate system. An
outline of the parent parabolic surface is marked by ~ symbols.
Figure l-15b is a projection of the rings on the X-Y~ local
coordinate system plane. This shows a true view of the
elliptical intersection curves, and also shows that the ellipses
are eccentric (to a maximum offset of R.2 sin&/4F).

The transformation equations for the three coordinate
Systemsl using S = sin $A and C = cos$A, are

r}! 11 -  Y.
=

Z1 Z-z.
[1012]

[1.13:[

Returning to Figure 1-14, and using Eqs. [1.12] and [1.13]
to compute the local coordinates of the points p~ and p~, shows
that both points have the Z~ coordinate of p4=(R~2 C/4F) .
Computing the Z coordinate of pd in the parent parabola
coordinate system as the average of the coordinates of Pd and p5

results in Z4 = (Y02 + RA2)/4F. A plane perpendicular to the Y-Z
plane at a distance of YO from the Z axis will intersect the
aperture plane-enclosing cylinder at x=R~ and y =YO, and the Z
coordinate on the parabolic surface here will again be (Y02
+RA2)/4F, which shows that pd is the projection of the
intersection of the aperture cylinder and parabolic surface on
the plane of Figure 1-14.

All of the foregoing relationships apply to any parabolic
surface of revolution that, either physically or conceptually, is
intersected by a circular cylinder offset from the axis of the
parabola.

One more particular feature that conceivably could be used
in the preparation of the tooling to either fabricate or check
the surface is a single planar template, which could be used to
define the contour of the surface. This template would be used
in planes parallel to either the Y-Z plane or parallel to the X-Z
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plane. In particular, if the template were held parallel to the
Y-Z plane at a fixed value of x, the surface equation would be

z = y2/4F + K [1.15]

where K is a constant that depends upon the X coordinate at which
the template is placed. The equation shows that the shape, which
is a function only of y, does not change at each x location.
However, the template has to be held at a different offset in the
Z direction for every distinct value of x. This feature is well
known, but we are not aware of any attempt, successful or
otherwise, to exploit it. Another special type of surface
template depends upon having fixed length pendulous probes
suspended from a rigid bar. These probes define the
theoretically exact contour when aligned parallel to the Z axis
and the bar is aligned with a radial secant to the surface. This
type of template could be used anywhere along any radial plane of
the surface, but the idea also has not appeared practical enough
for exploitation.

1.7 THE BLOCKED SHADOW

By using offset antenna geometry, obscuring of the main
reflector by the subreflector and support leg shadows is avoided.
Nevertheless, the antenna systems that predominate today are not
offset and therefore are subject to these blocking effects. The
blocked area consists of two types of shadows: plane wave and
spherical wave. The plane wave blocking effects comprise the
projections of the subreflector and an upper portion of the
support legs. The spherical wave blocking is the shadow of rays
emanating from the focal point that intersect the lower portion
of the support leg. Figure 1-16 shows typical shadows projected
onto the surface plane. Herndon (Ref. 1.6) developed a
comprehensive numerical integration computer program to calculate
the blocked areas; but results close to those from the computer
program can easily be obtained with some simple approximations.

Figure l-17a is a profile sketch of the reflector in the
plane of one of the support legs. The leg is assumed to have a
trapezoidal cross-section that is opaque with respect to
transmission of microwave energy. Symbols of the figure are:

F =
R =
R~ =
s =

z~ =
z~ =
h =
wl =

Focal length
Main reflector radius
Subreflector radius
Radial distance to centerline of leg at the
intersection with the main reflector surface
Z coordinate at S
Z coordinate at back of subreflector
Half leg depth
Width at inside face of leg
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Width at outside face of leg
Angle from the focal point to the rim of the
main reflector

Slope of surface at intersection with the centerline of
the leg
Slope angle of the leg

Figure l-17b is an expanded detail at the intersection of
the leg with the surface. SI and SO are the radial distances to
the points where the extensions of the inner and outer faces of
the leg would intersect the surface, and Q is the distance along
the tangent from the leg centerline to either of the intersection
points at SI or SOO The relatively small curvature makes it
reasonable to replace the curved surface by the tangent in the
vicinity of S. Q is given by

Q= h /sin (y@) [1.16]

therefore

s~ = S-Q COS ($ [1.17aJ

and

so = S+Q sin$ [1.17b]

Figure 1-17c shows the spherical wave shadow of the leg as a
trapezoid of length R-SO. To find the maximum width of the
trapezoid at the rim of antenna w~, it is necessary to find the
distances XI and XO where a ray from the focal point to the rim
crosses the inner and outer faces of the leg. To find XI, for
example, we have

F-ZI = Xl/tan ~’+ (SI - XI)tan v [1.18]

in which ZI is the Z coordinate at SI. By introducing ZO, the Z
coordinate at SO, a similar expression can be formed for XO, and
these expressions can be used to determine XI and XO.

If the width at the outer face of the leg governs the
spherical wave shadow, then the width of the trapezoid at SO is
WO and’ the width at the rim is

w~ = WO R/XO [1.19]

If the width at the inner face of the leg governs, it is
necessary to find the width of the trapezoid at SO. To do this,
we use the distance XIO, which is where a ray from the focal
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.,

point to the surface at SO intersects the inner leg face.
be found from the following expression

F-ZI = XIO/tan ~P + (S1-XIO)tan w

in which”

tan ~P = SO/(F-ZO)

and in this case the width of the spherical wave blocking
trapezoid at its base is

w~ = WI so/xlo

and the width at the rim is

w~ = WI R/XI

XIO can

[ 1 . 2 0 ]

[1.21]

[1.22]

[1.23]

The ideal profile for the leg cross-section would be when the
outer face provided the same width at the rim as the inner face.
In this case, the outer width would be

wO(ideal) = WI sl/xlo [1.24]

The foregoing computations imply several approximations that
are expected to have only a minor effect on the results. Some c>f
these are:

(1) The leg is assumed to be entirely opaque.
(2) The spherical wave leg shadow is modelled by the

projection of a trapezoid on the aperture plane. The
long sides of the trapezoid actually are curved and the
approach here slightly overestimates the shadow.

(3) The curve of the outer reflector rim is replaced by the
straight edge of the trapezoid.

(4) The leg profile is taken to have a constant cross-
section for the full length, and any customary tapering
towards a narrow point at the leg base is ignored.

A MATLAB program to calculate the blocked shadow essentially
as described above is presented in Appendix l-A.

1.8 THE ANTENNA SURFACE

The antenna surface is the primary microwave feature of
the antenna reflector system, and is the essential component to
either collect the microwave energy signal on reception or to
reflect the energy on transmission. Antenna microwave efficiency
is dependent on maintaining highly precise tolerances with
respect to the shape of the ideal surface curve. Surfaces of
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large antennas are traditionally composed of an arrangement of
many (frequently hundreds) of small, carefully manufactured,
individual separate panels.

1.8.1 Symmetrical Panel Arrangements

Figure 1-18 shows the reflecting surface and panel
arrangement of a typical symmetrical 34m antenna. The outer six
rings are subdivided into 48 separate panels, the next two inner
rings contain 24 panels each, and the first inner ring has 12
panels. The center of the aperture, which is blocked by the
subreflector, is open. All the panels are trapezoidal, and
although there are significant differences in the areas of panels
from ring to ring, the average area (projected on the aperture
plane) of the 348 panels is 2.6 square meters. For convenient
and accurate manufacturing, the range of panel areas tend to be
from 2 to 5 square meters. The tooling for panel fabrication
requires only one fixture per panel ring, because all panels in
each ring are the same.

The panels are supported by radial and circumferential
trusses of the backup structure. The nodes of the backup
structure trusswork are arranged to be aligned with the panel
corners so that each panel can be supported from a backup
structure node by an adjustable jack. This panel support
arrangement leads naturally to the conventional ~!rib and ring~t
backup structure configuration, in which the ribs are radial
trusses that are the major structural components and the rings
are circumferential (hoop) trusses that provide auxiliary
supporting interaction.

1.8.2 Offset Arrangements

The convenient adaptation in symmetrical antennas of
panels to backup structure does not hold for offset antennas.
Offset antennas impose a choice between the need to provide many
different panel fixtures or to sacrifice the desirably repetitive
nature of rib and ring construction. Figure 1-19 shows three
alternative arrangements for the panel and backup structures for
offset antennas.

The offset rib and ring arrangement in Figure l-19a provides
only an approximation of the advantages of true rib and ring
construction. As shown previously, the rings are elliptical and
not circular, and there is no repeatability to reduce the number
of panel fabrication fixtures.

The tetrahedron module backup structure in Figure :L-19b is
equivalent to an interlocking set of two kinds of tetrahedral.
One set of tetrahedra has its bases near the front surface and
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the other set has its bases at the back surface of the backup
structure. Particular rod members of the structure are shared by
both sets of tetrahedral. The inset sketch provides an idea of
the rod arrangement. The panels can either be of triangular or
of hexagonal shape. The hexagonal panels would encompass a

“ pattern of six triangles of the figure, such as the group in the
inset, so that alternate corners of each hexagon can be supported
by jacks. Although all panels would necessarily be different,
the arrangement does provide the opportunity for a three-point
statically determinate support system, which is preferable to the
four-point support of trapezoidal panels. The tetrahedron-type
arrangement with hexagonal panels is frequently adoptec~ for
orbiting space antennas and has also been used successfully for
small symmetrical ground-based antennas. In the case c)f the
ground antennas it was possible to machine the entire surface in
one setup.

The masked rib and ring format of Figure 1-19c recpires only
one panel fabrication fixture for each of its rings. (This is
,still about twice as many fixtures as would be required for a
symmetrical antenna of the same aperture.) The backup structure
is an isolated portion of the backup structure that would be used
in constructing the complete parent antenna; ribs are aligned
along the parent radii and rinqs follow the central parent
circles. The structure loses &ome of the advantages-
and structural efficiency of the traditional rib and
and is more difficult to design and fabricate than a
antenna.

1.8.3 Surface Panel Installation

of symmetry
ring framing
symmetrical

Panels are aligned in the field by adjustment of the
corner jack heights. A customary method of alignment is to use a
precise theodolite placed at the center of the aperture to read
the position of the panel corners and to determine the necessary
adjustments for the jacks. A tooling tape is frequently used to
set the radial distances for theodolite targets placed at the
panel corners. When the targets are in position at the
prescribed radii, the elevation angle of the theodolite can be
established for each target ring and the jacks are adjusted
accordingly to provide the desired surface. After the panels are
set via theodolite measurement and jack adjustment, an ~mportant
antenna will be remeasured either by theodolite or by microwave
measurements. Microwave holography (Ref. 1.7) or photogrammetric
measurement (Ref. 1.8) are techniques that have been used
effectively for this purpose. After remeasurement, the surface
is re-adjusted to reduce any observed residual errors. Iterative
repetitions of the process can be undertaken, depending upon the
accuracy required for the surface. At this writing, procedures
for accurate alignment of surface panels are still being studied,
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with much attention being given to improved measurement
techniques and to automation of these activities.

Field adjustment of the panels is almost always necessary
for large antennas because it is either uneconomical, or even
impossible, to fabricate and install the tons of backup structure
components to the precise tolerances needed for the final
surface. Typical installation surface accuracy specifications
are from 0.1 mm to 0.5 mm root-mean-square (rms), which is much
more restrictive than commercial fabrication and installation
practice. The need to provide field adjustment is one of the
reasons why the panels are parasitic; i.e., they are only
required to support their own weight and the local environmental
loadings (wind, snow, ice) applied directly to their surface.
This way, the panels are not required to participate in the major
structural action of the backup structure. It would be extremely
difficult to provide reliable load transfer between the backup
structure trusses and the panels. There are also other practical
reasons that enforce the logic of parasitic panels, ancl non-
parasitic panels are unusual.

1.8.4 Surface Area

It is useful to be able to calculate the surface area
of the panels for the purpose of estimating the weight, costs,
and loading on the backup structure. The surface area A, of a
symmetrical antenna is

A, = 8/3 7cF2[(l+R2/4F2)3’2-1] [1.25]

When the focal length-to-diameter ratio is replaced by the
symbol @and the projected aperture area is denoted by AO, then
Eq. [1.25] can be rewritten to give the ratio of surface area to
aperture area as

A,/A. = 32/3 @*[ {1+[1/16@2])3’2 -1] [1.26)

The surface area of an offset antenna can readily be
calculated by numerical integration. From Figure 1-20, an
increment in the planform area ~, is given in terms of the
variable parent radius R~, the half central angle e~, and the
increment in radius AR

AAi = 2 R~e, AR [1.27]

The central angle can be found from R~, the aperture radius
Raf the offset YO, and the law of cosines, so that

e, = cos-l[(R~2 - ,Ra2 + Y02)/ (2 Riy0) ] [1*28]
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The surface area is equal to the planform area divided by
the cosine of the surface slope $~, where $~ can be obtained by
differentiating the equation of the parent curve (Eq. [1.5a]),
e.g.

& =  tan-lR,/2F [1.29]

A program to compute surface area factors for symmetrical
and offset antennas is given in Appendix l-B. Figure 1-21 shows
curves of the area ratio factors for a range of focal length-to-
diameter ratios. The figure shows that offset antennas have
smaller surface areas than symmetrical antennas of the same
aperture area. This has been confirmed by an independent method
of computation.
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APPENDIX 1-A

PROGRAM TO CALCULATE THE BLOCKED SHADOW

Figure 1-A shows a MATLAB program to calculate the blocked
shadow. The total plane and spherical wave shadow areas and the
relative proportions of each are provided. In addition, the
user-furnished dimension Z~ is used to determine the clearances
between the back edge of the subreflector and the inner support
leg. A moderate acquaintance with any high-level codinq
language,
even with
following

(1)

(2)

(3)

such as FORTRAN, should mak~ th= code understandable,
no prior exposure to the program; however, the
comments may be helpful:

The % symbol is interpreted as the beginning of a non-
executable comment.
The program is case sensitive and almost all
instructions and built-in functions require lower case.
In contrast to (2) above, all of our variables
(including those of Figure 17) are represented in upper
case (i.e. , WI represents WI, TANBETA represents tan ~,
PSI is y, and so forth.

The sample data built into the program, which the user is
given the opportunity to replace, will result in a total shadow
of 5.478 percent. The effect on the microwave antenna is more
severe than the geometric aperture area reduction, perhaps by a
factor of about two.
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%This is MATLAB\MISCPROBS\BLOCKING.M, Feb.10,1993
% compute blocking of subreflector and tripod or quadripod
% The following two functions are expected to be available to MATLAB:
% function y=sine(x) function y=cosine(x)
% y=sin(x*pi/180) ; y=cos(x*pi/180) ;

format compact
% Set some default values for 34M HEF antenna
NLEGS=4; PSI=61.3967; F=434; ZS=406.7;
R=669.3; RS=75 . ; S=328; H=19.45; WI=9.5; Wo’=14 .

disp(~supply-  NLEGS,PSI,F,ZS,R,RS,S,H,WI,WO, AND ‘treturn~l 0,
keyboard
Tanphi=S/2/F;
PHI=atan(Tanphi) *180./pi;
Q=H/sine(PSI+PHI )
SI=S-Q*cosine(pHI)
SO=S+Q*cosine (PHI)
ZI=SI*SI/4/F
ZO=SO*SO/4/F
zMAx=R*R/4/F;
TANBETA=R/(F- ZMAX)
TANP=sine(PSI) /cosine(PSI)
DEN=l/TANBETA-TANP
XI=(F-ZI-SI*TANP)/DEN
XO=(F-ZO-SO*TANP) /DEN
TANBETAP=SO/ (F-ZO)
DENP=l/TANBETAP-TANP
XIO=(F-ZI-SI*TANP)/DENP
MAGI=R/XI
MAGO=R/XO
MAGIO=SO/XIO

WOPT=MAGIO*WI
AFACT=pi/144.
ASUB=RS*RS*AFACT %SQUARE FEET
AMAIN=R*R*AFACT
if WO>=WOPT
ASPH=(R-SO)*WO* .5*(1+MAGO) ;
else
ASPH=(R-SO)*WI* .5*(MAGIO+MAGI) ;

end
AsPH=AsPH*NLEGs/144
APLANE=WO*( SO-RS)*NLEGS/14 4
LEGSHAD=ASPH+APLANE
TOTSHAD=LEGSHAD+ASUB
TOTPCT=TOTSHAD/AMAIN* 100
LEGPCT=LEGSHAD/AMAIN* 100
% Blocking calculations completed above
% Now get leg-to-subreflector  clearances
CLH=SI-(ZS-ZI)/TANP-RS  % horizontal clearance
CLP=CLH*sine(PSI) % perpendicular to leg face clearance



APPENDIX 1-B

PROGRAM FOR AREA COMPUTATION

Figure 1-B is a MATLAB program to compute surface area
factors for symmetrical and offset antennas. Although the
notation is different, the formulation follows Eqs. [1.26 through
1.29], and there are also explanatory comments.
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% Feb 16,1993 this is AREASOFF.M, surface area of offset paraboloid
format compact
% set some defaults
fed=.2:.05:lo % focal length to diameter ratio
sd=.105 ~ ratio, subreflector envelope to parent diameter
n=20 % nu~er of increment tO use for parent radius
disp(’Supplyt’fod=a:b:c,sd=  , n= ‘1, or accept defaults, then “returncl’)
keyboard
rm=2/(1-sd) ;%radius of the parent~ (aPerture radius is ‘ixed at 1“0)
yo=rm-1 ; % offset to center of aperture
rmin=yo-1: rmax=yo+l;  % rmax-~in =2=aperture dlamo
delr=2/n;
r=rmin+delr/2 :delr:rmax-delr/2:
nf=length(fod)  ;
f=fod*2*rm; % the set of focal lengths
cc=(roA2 -1 +yoA2)./(r.*2*yo);
theta=acos(cc) ;
dela=2*r. *theta*delr; % vector of increments in projected aperture area
% the next few lines gets the factor for symmetric antennas
%creep up on the answer with fo, fl,f2,f3
fo=fod.A2; fl=(16*fo).A(-1):  f2=l+fl: f3=f2=Al”5-1:
fsym=32/3*fo.*f3;
for j=l:nf
slopef=sqrt(l+(r./2/f(j )).A2 ); % l/cos(surface  slope)
asj(j)=sum(dela.*slopef) :
foff(j)=asj(j)/pi; %ratio surface to aperture areas
end
disp(’SUMMARY’  )
disp(’fsym,foff,are  the ratios of surface to ’aperture areas’)
disp(’ fod f fsym foff’ )
[ fed’ f ’ fsym ‘ foff’ ]

.1 >
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CHAPTER 2

SURFACE ACCURACY

Deviations from perfect geometrical accuracy of the
reflecting surface have a major effect on the efficiency of the
antenna system. Deformations of the structure are responsible
for variations in the pathlengths of the microwave signals from
the affected parts of the surface. These pathlength variations
produce adverse errors in the phase characteristics of microwave
signals.

The main reflector surface, which is usually parabolic or
quasi-parabolic, is the most important contributor to surface
inaccuracies because its large size makes it vulnerable to
deflections. Consequently, this chapter concentrates on the
geometry and deformations of the. parabolic main reflector and how
these effects are analyzed in terms of microwave pathl.ength
errors. Nevertheless, there is hardly any difference in the
analysis of deviations for any of the other subreflector
surfaces.

Reflector surface analysis is based upon the geometry of
optical ray tracing. These geometric relationships represent the
first-order microwave effects adequately for all practical
structural engineering analysis and design purposes. (More
rigorous treatments, although not ordinarily needed fc)r
structural engineering, could be provided by the fielcls of
diffraction analysis and physical optics). Optical ray tracing
is a straightforward geometrical analysis that is capable of
appropriately characterizing the efficiency of the structural
surface using only two principles of optics: i.e., rays travel in
straight lines, and the law of reflection (the angle c)f
reflection at the surface equals the angle of incidence).

2.1 ANTENNA GAIN AND EFFICIENCY

Antenna gain is the ratio of the power transmitted by the
antenna to the power of an ideal isotropic radiator.The gain of
an ideal circular aperture antenna is concentrated in the
boresight direction and is given numerically in terms of the
diameter D and wavelength Las

GN= (zD/~)2 [2.1]

A real antenna has an overall efficiency factor q~ of less than
unity. In practice the numerical gain is replaced by the gain G
in units of decibels (dB). Decibels are computed as ten times
the common logarithm of the number. Consequently, the gain is
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G=1O log10 q~(nD/k)2 [2.2]

The efficiency factor is,the product of a chain of
efficiency terms from a number of loss-contributing effects, each
less than unity. Some of these effects are illuniination,
spillover, cross-polarization, leakage, aperture blocking, and
surface efficiency (Ref. 2.1). Surface efficiency is the most
significant of all of these and is a primary concern of the
structural engineer. The magnitude is usually in the range of
from 40% to 90%0 The efficiency factor associated with the
blocked surface area (Section 1.7) (primarily dictated by
configuration rather than design) could be in the range of from
85% to 90%. The illumination efficiency could be as low as 85%,
but can be improved significantly when the reflecting surface
shapes are slightly perturbed (S1shaped~i) with respect to the
basic parabolic, hyperbolic, or elliptical surfaces. The other
contributing efficiencies tend to be in the 95% to 99% range, so
that they are individually much less significant. Our emphasis
in this chapter will be on the reflector surface accuracy and
efficiency, which to a large extent can be controlled by
structural engineering because these factors are dependent upon
the response of the structure to environmental loading.

It is fortunate that a simple, but sufficiently accurate,
approximation exists to quantify reflector surface efficiency.
The Ruze equation (Refs. 2.2 and 2.3) provides the efficiency q
in terms of the wavelength k and a readily calculated structural
parameter, o, which is the root mean square (rms) half-
pathlength error. The Ruze equation is

n =  exp-(4za/k)2 [2.3]

Consequently, the reduction of gain due to the surface errors is

dB(loss)= 10 loglOq = 10(log10 e)x(4no/k)2= 4.342g(4na/k)2 [2.4]

The Ruze equation was derived originally for the assumptions
that the surface errors have a Gaussian distribution, that they
are uncorrelated outside of a region that is small in comparison
with the reflector diameter, and that there are a sufficient
number of terms in the computation of a to make it statistically
meaningful. The first two assumptions could be approximately
satisfied by the random errors of manufacturing and field
installation tolerances. However, when the surface errors are
the result of structural deflections caused by the environmental.
loading, neither of these two assumptions are valid because
structural deformations are correlated over long distances and
have systematic deterministic (rather than random Gaussian)
distributions. Nevertheless, the Ruze equation seems to hold in
most practical cases despite violation of the assumptions. In
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tests of surface deflection patterns caused by environmental
loading, the validity of the equation has been verified to
provide almost the same reduction in gain that was found by a
much more comprehensive geometric theory of diffraction analysis.
The third of the assumptions above presents no difficulties
because the number of terms logically chosen for analysis usually
will readily meet the statistical requirements.

The Ruze equation can be used to establish a term called the
“gain limit” for an antenna of given diameter and pathlength
error. At the gain limit the increase of gain (Eq. [2.1]) for an
increase in operating frequency (e.g., reduction in wavelength)
is offset by the loss of efficiency (Eq. [2.4]) for the smaller
wavelength that accompanies the frequency increase. It can be
shown that the half-pathlength error at the gain limit. is

a= ?J4n [2.5]

The surface efficiency at the gain limit is only 37% and the
associated gain reduction is 4.3 dB. This value of the
pathlength error is sometimes considered to be a practical upper
limit of usefulness for a given antenna and frequency.

2.2 THE PATHLENGTH

Figure 2-1 shows a section through a radial plane of a
Cassegrain antenna. This is a projection in the R-Z plane in
which R is the radial coordinate axis and Z is the focal axis.
An incident ray parallel to the focal (Z) axis at radius r
crosses the focal plane at point 1 and is reflected at the
surface at point 2. The reflected ray travels towards the focal
point until it impinges on the subreflector at point 3. A
subsequent reflection brings the ray to the feed at point 4.
(The notations F, c, and a are the same as in Eqs. [1.5] and
[1.6].)

The vector tangent to the surface at r is t and (1 is the
slope of the tangent. The normal to the surface is n and o is
also the angle between the normal and the incident and the
reflected rays; P(= 20) is the full angle between incident and
reflected rays. Point 2, with coordinates (r,z), is the point
of incidence on the main reflector.

By differentiating Eq. [1.5a), we find

tano = r/2F

Also, by inspection of Figure 2-1

tan ~= r/ (F-z)
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and the hypotenuse of the triangle 1-2-5 can be shown to be F+z.
Consequently, if this was a focal point antenna (with a feed at
the focus instead of a subreflector) the pathlength from focal
plane to the surface to the focal point would be (F-z) +(F+z) =
2F. A simpler way to arrive at this is to consider a central
incident ray along the focal axis (r =0). It is clear that
incident and reflected rays would travel the path distances of F
from the focal plane to the surface and again back to the focal
point. The pathlength from focal plane to feed for a Cassegrain
antenna with a subreflector is also most easily found by
considering a central ray. By adding the paths 1-2, 2-3, and 3-4
of the figure, this focal plane to focal point path is 2(F+a).
It could be shown that the pathlength is also the same for any
other incident ray parallel to the focal axis.

The important feature of the parabolic reflector is that the
pathlength, either for focal feed or Cassegrain system, is
independent of the radius to the. incident ray. That is, the
pathlength for an ideal geometric surface is a constant for any
point of the surface. In determining the surface accuracy our
prime interest is the change in this pathlength due to surface
deformations. This change, which affects the microwave phase, is
considered next.

2.3 PATHLENGTH ERROR

2.3.1 Computational Formula

Figure 2-2 shows an enlarged view of the region in the
vicinity of point 2 of Figure 2-1. Now, however, a vector d that
represents the deformation from the ideal surface has been added.
This vector is the result of a change in surface shape due to any
cause, such as external environmental loading, or fabrication, or
alignment errors. It is convenient to consider a deformation
from a point 6 of the original surface chosen so that d extends
from point 6 and terminates at point 7, which is on the path of
the original ray reflected from point 2 to the focal point.
There is no loss of generality in this because every deformation
vector will always terminate at a ray that extends from some
originally undeformed surface point towards the focal point, or
possibly at an extension of that ray below the surface.

The deformation has been greatly exaggerated in this figure;
deformations are ordinarily so small relative to the scale of the
original surface that the geometry in this region can be
simplified with negligible error. This allows the analysis to
replace surfaces in a small region by the tangents to the
surfaces. The result is that the surface from point 6 to point 2
is replaced by the tangent plane at point 2. Furthermore the
tangent at points 2 and 6 can be taken as the same.

It can be seen from the figure that the sum of the distances
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from point 2 to point 8 and point 2 to point 7 is the difference
in path from focal plane to focal point for an incident ray that
crosses the focal plane at point 1 and the path of a ray that
crosses the focal plane at point 9. These two distances are also
dimensioned in the figure as s and p.

In the figure, the distance from point 2 to point 10 is the
projection of the deformation vector on the normal to the surface
vector and, from vector algebra, is equal to the dot(inner)
product of the deformation vector with a unit normal n. The
distance s is this dot product divided by the cosine of 6. That
is,

s = d.n/cosO [2.8]

and, from the figure, the distance p is

p=s Cos p =scos2e “

or using a trigonometric identity,

P=S (2 cOde-1)

[2.9]

[2.10]

so that the pathlength error is

S+p = 2d.n cOse [2.11]

Finally, we have an important equation that is used to
compute p, the half-pathlength error at a particular pc>int on the
surface,

p=d.n cos (1 [2.12]

In words: The half-pathlength error is the normal component
of the deformation vector times the direction cosine with respect
to the focal axis. Sometimes the half-pathlength error is
referred to as the axial component of the normal error, which
with proper interpretation is equivalent to the previous
description. Equation [2.12], which was developed for a
parabolic main reflector, can be used to compute the half-
pathlength error for any deformed surface in terms of the normal
to that surface and the associated direction cosine. It is
common practice to refer to the half pathlength error more simply
as the “pathlength error” and to drop the prefix “half”.
Following common practice, the remainder of this text will also
imply that the half pathlength error is intended even though the
prefix “half~’ may or may not be included.

2.3.2 pathlenqth Error In Three Dimensions
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It is necessary to generalize the pathlength error
computation to the three-dimensional space of an antenna surface.
In particular the pathlength error is computed at a discrete set
of points distributed over the surface. These points provide a
sampling of the surface for computation of the rms error in the
Ruze equation (Eq. [2.3]). The set of points typically consists
of the nodes nearest the surface in the analytical model of the
structure. This set is usually closely equivalent to points at
the corners of the surface panels.

Equation [2.12] can be rewritten to provide the half-
pathlength error at a particular point i as

Pi = (% dn)i [2.13]

in which y, is the direction cosine at point i with respect to
the focal (Z) axis and dn is the projection (cl.n) of the
deformation vector on the surface normal at point i. That is , dn
is the normal component of the deformation vector.

In three-dimensional Cartesian space we will take the X and
Y axes to be in the aperture plane and the Z-axis positive in the
direction of the focal point. This is consistent with the
definition of the coordinate system given in Section 1.6.3. The
radial coordinate r of Figure 2-1 will be replaced by its x and y
(Pythagorean Theorem) components. Furthermore, although the
subscript i is typically omitted for convenience, the following
discussion refers to some particular point i with coordinates

By extending Eq. [1.5a) from a curve
revolution, the equation of the parabolic
becomes

G(x,y,z) = Z ‘(x’ + y2)/4F = O

To find a unit normal to the surface,

to a surface of
surface G(x,y,z)

[2.14]

we first find the
gradient W, which is a vector normal to the surface and positive
towards the focal point. Thus from Eq. [2.14) we have

VG = [-2x/4F -2y/4F 1] [2.15]

in which the components are ordered parallel to the X, Y, and Z
axes, respectively. The unit normal vector is obtained by
normalizing the gradient by its length. This provides the
components of a unit normal to the parabolic surface as

n = v~/\v~l = [-x -y 2FJ/T [2.16]

in which
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T = (X2 + y2 + 4F2)I/2 [2.17]

The unit normal is often expressed in terms of its direction
cosines with respect to the coordinate axes. That is,

n =[YX YY Y,] [2.18]

Therefore, matching Eqs. [2.17] and [2.18] provides

Y. = -x/T [2.19a)

YY = ‘Y/T [2.19b)

Y, = 2F/T [2.19c]

The deformation vector,in a Cartesian coordinate system is

d =[UVWJ . [2.20]

in which u, v, w, are the components of the deflection vector at
the point in the X, Y, and Z directions. Therefore, for
Eq. [2.13],

dn = d.n = (Yxu +Yyv + Yzw) [2.21]

Then substituting in Eq. 2.13, we have the half-pathlength error
pi at the point i in terms of the coordinates of the point

Pi = 2F(-xu -W + 2Fw)i [2.22]

[2.23]

(T2) ,

or in terms of direction cosines

Pi = (YZYY.U + YzYyv + YzYzw)i

2.3.3 parameters For Fitting

It is not necessary to compute the pathlength error
terms of the original surface equation, but it is permissible
(and advisable) to compute the pathlength error from an
alternative surface that best-fits the deformed surface. The
important effect on the microwave system is the phase error
distribution over the surface. Specifically, if the oricrinal
parabolic surface deformed into a~other parabolic surfac=, all
rays from the second surface would have the same new overall
pathlength . Since these rays would arrive at the feed with a
constant phase there would be no adverse microwave effect.
Therefore the approach is to compute pathlength errors as the
residual errors with respect to an alternative new parabolic
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surface that best fits the deformation data.

The alternative surface is defined in terms of five
parameters that constitute a rigid body motion and an additional
parameter that is related to a change in the original focal
length. Nevertheless, it is necessary for the position of the
subreflector for a dual reflector system, or for the position of
the feed for a focal feed reflector, to be movable. This would
allow compatibility variations in the microwave path geometry
established by the fitting parameters. Typical antennas actually
do have provisions for providing these necessary motions.

The five parameters (Ref. 2.4) are indicated in Figure 2-3.
They consist of three translations, Uo, VO, and Wo, parallel to
the X, Y, and Z coordinate axes, and rotationseX and eY about the
respective axes. One more parameter is related to the new focal
length FO. Reference 2.6 describes a widely distributed FORTRAN
program to compute the best fit surface and residual pathlength
error. A focal change parameter k was defined in this reference
in terms of the focal length of the new parabola F. and the
original focal length F as follows:

k= (Fe/F -1) [2.24]

In Ref. 2.5 the six parameters were called the “homology
parameters~t because they represent a transformation from the
original parabolic surface to an alternative parabolic surface.

2.3.4 The Fittinq Equation

The three translation parameters produce the following
changes in the original displacements with respect to the new
surface:

Au = -U. [2.25a]

Av = -V. [2.25b]

Aw = -WO [2.25c)

The parameter k, which was taken in Ref. 2.6 as the fourth
parameter, produces

Aw = -kz [2.26]

The structural deformations are always small for any
reasonable antenna structure so that the best-fitting surface
will differ very little from the original. In particular the
magnitudes of the rotations are small enough to allow the sines
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of rotation angles to be replaced by the angles and the cosines
to be replaced by unity. Consequently, the rotation parameters
6X and OY additionally affect the u, v, w, components as follows:

A u= -z ey [2.27a]

Av= Zex [2.27b]

A W= -Yex+xey [2.27c] .

Combining Eqs. [2.25), [2.26), and [2.27] we have

A u = -1 0 0 0 0 -z

II

u~
Av = o -1 0 0 z o V.
Aw = o 0 -1 -z -y x W.

k

ex
I
\ e,} [2.28]

Equation 2.28 can be written for any particular node i as

Auvwi = Ci H [2.29]

in which Auvw is the triad on the left-hand side of Eq. [2.28],
c~ on the right hand side is the 3-by-6 coefficient matrix on the
right-hand side, and H is the vector of fitting parameters on the
right-hand side. The equation relates the change in deformation
coefficients at node i to the coefficient matrix for that node
and the fitting parameters for all nodes.

With omission of the subscripts, Eq. [2.23] can be written
for this node in matrix form as

P = a u [2.30]

in which

a  =  
[~z?’x YZYY YZYZ ) [2.31]

and

U=(U
v
w)

[2.31]

Consequently, after fitting we have
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p(fit) = a(u + Auvw)

or

p(fit)=au+b H

[2.32]

[2.33]

where

b=ac

For reference, the row-column order of the matrices just
defined are summarized in the table below:

Matdx Order

H 6 x 1
u 3 X 1
a 1%3

3 x 6
: 1 x 6

Now it is possible to expand Eq. [2.33] to include the half-
pathlength error vector p (after fitting) for all of the nodes of
the surface as

P =AU+BH [2.35]

In the above if there are N nodes in the surface, p is an N-by-1
row of half-pathlength errors, A is an N-by-3N matrix in which
the a vectors are contained in the rows, beginning in column 1 in
the first row, column 4 in the second row, column 7 in the third
row, and in column 3j-2 in the jth row; U is a 3N-by-l vector
containing the u vector triads in the order of the associated
nodes, B is an N-by-6 matrix that contains the associated b
vector in each of its rows, and H is the same as in Eq. [2.28].

2.3.5 Weiahtina Factors

At this point it would be possible to solve a least
squares problem to find H and then find the mean square
pathlength error (the mean of the squares of the components of
the pathlength error vector). This would not be strictly
accurate because the nodes do not have equal microwave
importance. It is more appropriate to compute a weighted rms
error. To do this, the weighting factors for each node can be
based upon two factors: one is a microwave illumination factor
(a function of feedhorn design), the other depends upon the
aperture area tributary to the particular surface node.

When the panels are arranged in a circular pattern, as in
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Figure 1-18, it is straightforward to compute the area weighting
factors in terms of the central angle and mid-radii of the
adjacent panel rings. It may also be instructive to normalize
the area weighting factors so that they sum to N. In this manner
a weighting factor of unity applies to a node associated with the
average aperture area. These area weighting factors can also be
used in the computation of environmental loading that depends
upon the reflector area, such as from panel weight or wind
forces.

Illumination factors are given in a variety of ways as
functions of a radius ~ that has been normalized to unity. An
example illumination factor is

f(g) = 0.3 + o.7(1-g*) [2.36]

At the rim, (E = 1) the illumination factor is 0.3. The
attenuation in decibels would be”about 10 dB (since this is an
amplitude factor, rather than a factor on antenna power, decibels
are computed as 20 times the logarithm). Consequently, the feed
that produces this illumination would be called a ‘llO-dB horn.sl

In many of the more modern antennas, the main reflector is a
“shaped” parabolic surface. The shaping consists of a very small
perturbation of the surface from a parabolic curve. As an
example, the maximum departure from a parabolic curve for a 34-m
antenna would be on the order of less than 20 mm. The purpose of
shaping is to provide an illumination factor of close to unity
for most of the surface; therefore the weighting factors for
shaped antennas could be based upon only the area that is
tributary to the nodes. In any case the weighting factors can be
assembled in a diagonal matrix W where the entries correspond to
the nodes associated with the pathlength error vector.

By including the nodal weighting factors, the mean square
pathlength error, MSE, is given by

MSE = pTwp/xwi

where Xwi is the sum of the weighting factors.

It has been found in a number of tests that
not strongly sensitive to the weighting factor.
weighting factor of unity at the interior nodes,
the rim nodes~ produces a result similar to that
precisely computed weights.

2.3.6 Minimization of the Mean SCIUare

[2.37]

the rms error is
Many times a
and one-half at
of more

The conventional least squares method to find H to
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minimize the weighted mean square
equivalent to pre-multiplying the
by Bt W and setting this to zero.
squares “normal equations”

BtWAU+BtWBH=O

half-pathlength error is
right-hand side of Eq. [2.35]
This provides the usual least

[2.38]

Equation [2.38] can readily be solved for H by a number of
software programs. The coefficient matrix Bt W B is usually of
full rank and well conditioned and the order is at most only 6.

Once H has been computed, the best-fit (half)pathlength
error vector can be found from Eq. [2.33] and the mean square
error can be found from Eq. [2.37). The square root of the mean
square error is a, which then can be used in the Ruze equation to
compute the efficiency or gain reduction (Eqs. [2.3-2.4]).

The foregoing solution was described in terms of a matrix
formulation to simplify the presentation. In practice the
solution code performs the summations indicated by the matrix
operations without explicitly forming the matrices. For example,
the diagonal weighting matrix W could be replaced by a vector
consisting of its diagonal elements and all the operations could
be done in terms of this vector. This is favorable both for
numerical computations and computer storage. A MATLAB program
to compute the best-fit rms pathlength error as described here is
included in Appendix 2-A.

2.4 ADDITIONAL NOTES

2.4.1 Alternative Fitting Parameter Combinations

When the structure and loading are symmetrical about
the Y Z plane, the finite element model that provides the
deformation vector U is often condensed and assembled to
represent only one side of the structure, such as the side in the
first and fourth quadrants. In this case the first and sixth
fitting parameters (XO and eY) should be suppressed. This is
dealt with by replacing the first and sixth rows and columns of
the matrices in Eq. [2.38] by zeros and then inserting unity in
“the first and sixth diagonal entries of the coefficient matrix.
If it is appropriate to suppress any of the other fitting
parameters, this can be done in a similar way.

If parameter suppression produces a non zero mean pathlength
error the mean should be subtracted from each term of the
pathlength vector. That is, any constant term should be removed
because it does not affect the microwave phase. Consequently, it
is reasonable to conclude that ‘~rms” error is actually a misnomer
and should be replaced by “standard deviation.”
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2.4.2 Reduction of the Mean Suuare Error from the l=

Best fitting of the pathlength error almost always
produces a major reduction of the mean square error, perhaps by
one or more orders of magnitude. The change in the mean square
pathlength error as well as the effect of each of the individual
terms in the fitting vector can be readily developed. For
example, H is obtained by solving the following set of linear
equations:

(BtWB)H= -(BtWAU) [ 2 . 3 9 ]

where the coefficient matrix and the ‘tright-hand side” are
readily identified. With a little bit of algebra that involves
substituting H as found from the equation above in Eq. [2.35] and
by computing the weighted best-fit mean square pathlength error
aid su~trac~ing
before fitting,
square ~SE is

~SE = H’

the weighted mean square (raw) pathlength error
it will be found that the change in the mean

(B’ WA U) [2.40]

That is, the change(reduction) in mean square pathlength error is
the dot product of the solution vector and the right-hand side
vec:tor used in the solution. Consequently, each of the six
individual terms in the dot product summation can be examined to
assess the contribution of the particular fitting parameter to
the reduction in mean square error.

2.4.3 hlternative Solution Method

As an alternative to forming and solving the normal
equations, it is possible to condense the procedure when software
is available to solve the least squares problem by operating
directly on a rectangular (not square) coefficient matrix. To
accomplish this we ask for a solution to the system

B H = -p (raw) [2.41.]

Equation [2.41] follows from Eqs. [2.30] and [2.33]. The
weighting factors can be included by premultiplying both sides of
Eq. [2.41] by the square root of the weighting matrix. The
MATLAB instruction to develop H is

H = wB\wR [2.42]

where

WB = @/2~
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and

~.

2.4.4

there are

-W’np (raw)

I’JUmbers of Surface Points to Include

One of the assumptions in the Ruze equation is that
a statistically sufficient number of points in the mean

square pathlength error calculation. Ordinarily the calculations
include all the surface nodes of the analytical model of the
structure, which is approximately equivalent to the numbers of
surface panel corners, which is also approximately the number of
panels. Although a statistical analysis will not be undertaken
to determine the sufficient number of points, the results of a
simulation will be described. This will show that not too many
points are needed to obtain reasonable results.

The simulation was based upon the 34-m antenna for which the
panel layout was shown in Figure 1-18. There are 528 nodes in
the top surface of the antenna. The procedure was to select
fractional subsets of this number of nodes at random and to
compute the pathlength errors for each subset for one particular
case of external loading. The fractions selected produced
approximately 1/2, 1/4, 1/8, 1/16, and 1/32 of the original
nodes. The original weighting factors were always retained for
the selected nodes. The tabulations below show the normalized
rms best-fit pathlength error, the normalized value of the
maximum fitting parameter (in this case it was always WO) , and
the numbers of nodes in the subset.

RMS Pathlength 1.000 0.978 0.964 1.000 0.906 0.827

Maximum Parameter 1.000 0.997 1.000 0.991 1.020 1.026

Number of Nodes 528 266 130 66 34 15

It can be seen that there was not any significant difference
in the pathlength error until more than 90% of the nodes were
deleted. The maximum fitting parameter was even less sensitive
to the number of nodes. On the one hand, there are no
computational difficulties that would make it important to
process less than all of the nodes, at least on paper. On the
other hand, when in the field, and especially when in the process
of taking theodolite measurements of the nodes, it is reassuring
to know that the imposition of a truncated set of nodes need not
introduce a major error.
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FIGURES

2-1* Microwave Pathlength

2-2. Surface Deformation

2-3. Fitting Parameters

A2-1. MATLAB Pathlength Error Program

.
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APPENDIX 2-A

PROGRAM TO COMPUTE BEST-FIT RMS PATHLENGTH

PATHA2 (Figure A2-1) is.a MATLAB program to compute the
half-pathlength error and the fitting parameters. The algorithms
are constructed similarly to the process described in Chapter 2.
The bulk data input is defined as the matrix ‘Idata,tl and there is
one row for each node. The first two columns contain the X and Y
coordinates (in a standard coordinate system; see Chapter 1).
The third aolumn, which traditionally contains the Z coordinate
from some arbitrary data, is ignored because the code computes
the Z coordinate from the parabolic equation. The next three
columns contain the displacement triad, u, v, w. The last two
columns contain the weighting factor and the node label. The
node label is arbitrary, and it would be easy to modify the code
so that only seven columns need be supplied. The focal length
must also be supplied as input. The row vector ~lnopt~c is an
optional input that can be used to suppress any of the fitting
parameters. The user prompt explains how this could be used.
The six components of H, the fitting parameters, are ordered as
in the text and the components are printed in that order at the
end. Names of variables computed within
always exactly the same as in the text.
variables should be recognizable without

the program are not
Nevertheless, the
difficulty.
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PATHA2 . M

% Dec 9, 1992 this is now PATHA2.M for Appendix 2
% A Matlab program to do pathlength analysis
% the input data requires focus, options and
% (1) (2) (3) (4) (5) (6) (7) (8)
% bulk data(IDEAS format)[X Y not used u v w weight label]
format compact
disp(tIf there are nonzero options, supply row vector “noPt” ‘)
disp(t, (up to 6 terms) 1)
disp(t such that nopt=[6 1] (alt or [ 1 6])’)
disp(t will suppress X translation and Y-axis rotation;’)
disp(’ and nopt=[-2]will be changed to [1 6](symmetrY) ‘)
disp(’ for anti-symmetric half, supply nopt=[2 3 4 5]’)
disp(’ (any order is o.k.)’)
disp(tneed to have “focus=..”, & the n by 8 file “data”~ & CTRL-Z’
).
keyboard
x=data(:,l) ;,y-data(:  ,2) ;,u=data(: 14) ;~v=data(:~5) :~w=data(:.t6) :
wgt=data(:  ,7) ;,label=data( :,8); “
z=(x.*x+y.*y)/4/focus;
t2=(x.*x+y. *y+4*focus*focus*ones (size(x))):
rho=-2*focus*(x.  *u+y.*v-2*w.  *focus) ./t2;
t=sqrt(t2);
% form rho(new)=rho+A*H H=[X Y Z -deltaf/(f+deltaf) thetaX thetaY
1
i=focus;
gzgx=-2*f*x./t2 ;,gzgy=- 2*f*y./t2;,gzgz=4*f*f*ones(size(x) )./t2;
A=[-gzgx -gzgy -gzgz -zo*gzgz (z.*gzgy-y.*gzgz) (-z.*gzgx+x.*gzgz)
];
%now do classical normal equations
for j=l:6,qwa( :,j)=wgt.*A( :,j);end~
Am=A$*qwa; Bm=A~*(wgt.*rho); % this took <.1 sec

en=exist(’nopt’)  ;
if(en==lj  -

if ( nopt==-2),nopt=[ 1 6 ];,end %This “-21’ is traditional
nopt=sort(nopt) ;ll=length(nopt)  :

for j=l:ll
q=nopt(j);

Am(:,q)=zeros(6,  1);Am(q, :)=zeros(l,6)  :~(q~q)=l: Bm(ql=O:
end % on j

end % on if(en==l)
xx=-Am\Bm:
rhofit=rho+A*xx;
% get the best fit normals from rhofit
gz=2*focus*ones  (length(wgt), I)./t; % gamma z
invgz=ones (size(gz)) ./gz;
dn=diag(invgz) *rhofit;
sumw=sum(wgt) ;
mmm=rhofit.*wgt; mmml=mmm’*rhofit;
meansq=sum(mmml)/sumw;  .
RMSNEW=sqrt(meansq)
NEWF=f/(l+xx( 4))
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PATHA2.M

DELTAF=NEWF- f
XOFF=XX(l)
YOFF=XX(2)
ZOFF=XX(3)
ROTX=XX(5)
ROTY=XX(6)
fprintf(lSum  of weights is %g\nc,sumw)

,.
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CHAPTER 3

DEFORMATION ANALYSIS

It was shown in Chapter 2 that the deformation vector d is
fundamental to the computation of the pathlength error. Antenna
surface deformations are a function of environmental loading,
factors such as wind, temperature, and - of primary importance -
the effect of the gravity (self-weight) loading on the structure.
The gravity effect is caused by the variable direction of the
gravity vector with respect to the moving antenna surface as the
antenna rotates about the elevation axis. Deformations are
usually computed from a finite element method (FEM) analysis that
applies the loading to a mathematical (analytical) model of the
physical structure. FEM antenna models entail thousands of
displacement degrees of freedoml and require the solution of a
corresponding set of simultaneous linear equations.
Nevertheless, the computer processing of antenna structures by
any of a number of public or proprietary FEM software programs is
well within conventional software and hardware capabilities.

The steps of model generation, data preparation, and
computer utilization are familiar to almost all structural
analysts, so they will only be touched upon here. This chapter
will provide a brief overview of structural deformation analysis
to orient those who may be unfamiliar with the process. More
extensive details are available in many references that span the
recent 30 year time period (e.g., Refs. 3.1 and 3.2). Some of
the noteworthy development history will be reviewed first. Then
deflection analysis will be illustrated for a primitive structure
model. Both the Force and Displacement methods of structural
analysis will be considered. Although the Force method is not
the usual approach in production computer analysis software, it
provides useful insight into the response of loaded structures
and provides the basis for the antenna structure optimization
procedure that will be covered in a subsequent chapter. The
Displacement method is the more powerful of the two when
automated computer structural analysis procedures are employed.
Following these illustrations, analysis procedures will be
extended from the primitive model to a more complex antenna
structure.

lThere is one degree of freedom for each possible displacement
component. Antenna structures, for example, will usually have
three translational degrees of freedom at each node (joint) of the
model, corresponding to the displacement components parallel to the
X, Y, and Z coordinate axes. Three additional nodal degrees of
freedom could be considered for structural models that include the
rotations about these axes.
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3.1 HISTORICAL BACKGROUND

Modern FEM analysis systems were preceded by matrix analysis
methods in which the matrices were hand-generated and solved by
whatever methods were available at the time. In the early days
of structural analysis the solution methods consisted of slide
rules and mechanical desk calculators and the equations were
solved by iteration, relaxation, or elimination. The emergence
of primitive computer systems dates to the 1940s and 1950s, but
the process of adapting structural analysis to these computers
and industry acceptance took many years.

The earliest widely distributed paper on matrix structural
analysis may have been the 1952 classical Wehle and Lansing paper
(Ref. 3.3) , “Stiffness and Deflection Analysis of Complex
Structures, “ in which the Force method of analysis (which has
been supplanted by the Displacement method in more modern FEM
programs) was used for airframe analysis. The extent of
computer analysis prevalent at the time can be deduced from the
author~s caution that the analyst should always include check
rows and columns in the computations, “ even if the calculations
are performed by means of IBM equipment~t (Ref. 3.3, p. 681) . The
Displacement method, which is the method of choice in current FEM
programs, was introduced in 1956 in another classic paper by
Turner, Clough, Martin, and Topp (Ref. 3.4). The Force method is
based upon the flexibility matrix, which is an influence
coefficient matrix that provides the displacements at each degree
of freedom of the model for independent unit loads at the other
degrees of freedom. The Displacement method is based upon the
stiffness matrix, which establishes the forces on the structure
when an independent unit displacement is imposed upon each degree
of freedom.

Clough, in a 1960 conference, coined the term ~tfinite
element,~t  and also introduced the concept of assuming rational
shape functions to represent element displacement patterns (Ref.
3.5). Shape functions are the basis of the more modern
isoparametric element idea. Berman, a pioneering but sadly
unappreciated advocate of computer processing, was one of the
first to apply matrix computer analysis to a complex structure
(Ref. 3.6). He proposed to analyze a large antenna structure by
the Force method. The Force method effectively met its end for
large-scale production applications when it was dropped as an
alternative computer analysis procedure in developing the NASTRAN
program (Ref. 3.7) in the late 1960s. Nevertheless, as will be
demonstrated here, the Force method can be preferable to the
Displacement method for hand analysis of models that entail only
a small number of components. Also, this method can most readily
supply the analyst with information about and insight into
response characteristics of the particular structure. On the
other hand, if the analytical model contains more than a few
degrees of freedom, contemporary computer processing by any
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method other than the displacement method is unusual.

In 1962, the STAIR program (Ref. 3.8) was developed for
analysis of the 120-foot-diameter Haystack antenna. The STAIR
program considered only the three orthogonal translational
degrees of freedom at each of the nodes of the model. The FRAN
program (Ref. 3.9) was subsequently developed for the same
antenna to supplement the STAIR capability with the three
rotational nodal degrees of freedom. Nevertheless, it
traditionally has been assumed (and sometimes verified) that
bending stiffness, which can be treated in programs that
recognize rotational degrees of freedom, are higher order effects
and can be ignored in contemporary well-designed antenna
structures. Today, as deformation tolerances tend to become more
stringent, this assumption warrants further investigation. The
64-meter MARS antenna was also analyzed by the STAIR program
(Ref. 3.10) at about this time. Here, although STAIR contained
an innovative version of what later was to become known as
“substructuring 1 ‘l the available computer resources limited the
model to a doubly-symmetrical one-quarter section of the full
structure. This limitation has disappeared with modern computer
capability. The primitive substructuring capability at that time
required a great deal of ad hoc data preparation by the analyst.
More recent programs attempt to go as far as possible in freeing
the analyst from the chores of hand data preparation. As a
matter of fact, computer automation has become so extensive that
it is possible for a neophyte analyst to execute substantial
computer processing without any real understanding of structural
behavior. The possible consequences of an over-permissive
computer program have actually become a source of concern for the
structural engineering profession.

3.2 FORCE METHOD

A simple way to illustrate the Force method is to go through
the steps in the analysis of an elementary model. This allows the
essentials of the method to be demonstrated readily and. the
associated computations to be followed easily.

3.2.1 linalY sis of a Three-Bar TrUss

Figure 3-la shows the analytical model of a two-dimensional
truss structure that consists of the three bars labelled 1, 2,
and 3. Specific values of the bar lengths, Ll, L2, and L~, are
dimensioned in the figure. Symbolic external loads PI and Pz are
applied in the directions of the X and Y coordinate axes,
respectively. The structure is restrained in the X and Y
directions at the left end. The roller shown at the right end
permits movement in the X direction, so that at this end the
structure is restrained only in the Y direction.
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All three nodal jointsz (at the junctions of each pair of
bars) are assumed to be connected by pins that are capable of
transmitting direct forces along the member axes but are not
capable of restraining rotations of the members. The pin-jointed
assumption is usually appropriate for antenna framework
construction; the neglect of rigidity of the connections between
members that can restrain the independent rotations at the joints
is usually of secondary and higher order, rather than primary,
importance. Because of the pin-jointed assumption, it would be
more appropriate to denote these members that resist only the
forces along their axes as llrods~l and to reserve the connotation
“bar” for members that resist both axial forces and the end
moment couples that result from restraining free rotation at the
joints.

The internal forces in the rods that result from the
external loads can be computed in this case from static
equilibrium. The requirements at each node are given by the
three conventional force equilibrium conditions

~ Forceu = O, a= X,Y,Z [3.1]

where the summation is over all of the force contributions at the
node. Therefore, “Force~” in this equation does not distinguish
between internal forces of the members acting on the joint,
external loading, or the reactions that result from the restraint
to joint displacements. From here on, to provide this
distinction, “P” will be reserved to denote external loading, n
will be used to denote internal member force, and R or P= will be
used to denote external reaction forces of restraint. All of the
foregoing symbols can be particularized by appending subscripts
as appropriate.

Individual free body diagrams of the rods are shown in
Figure 3-lb. Here, nl, nz, and n~ are assumed to be tensile
forces on these members. By convention, the direction of the
arrows shown at the ends of the member represent the directions
of the forces applied by the members on the joint. Conversely,
the forces applied to the members by the joints are in the
opposite directions. Although not indicated in the figure, these
forces can be visualized as acting in the directions opposite to
those shown by the end arrows and in each case would tend to
stretch the member, consistent with the assumption of member
tension.

The components of the member force acting in the clirection
of any of the coordinate axes have the magnitude of the member

2“Nodes” and ~ljoints~~ are considered here as interchangeable
terms.
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force times the direction cosine with respect to that axis.
Consequently, the equilibrium conditions can be written in terms
of the direction cosines and the as yet unknown rod forces. For
example, at the upper joint of the truss the equations of
equilibrium in the X and in the Y directions follow:

PI - nl cos 71X + n2 cos y2X =0 [3.2a]

-P~ - nl cos ylY - n2 cos y2Y =0 [3.2b]

For example, the term cos yl, refers to the direction cosine of
rod 1 with respect to the X axis. Also, a positive sign is
associated with forces in the positive X and Y directions. Here,
the appropriate signs for nl and nz are determined by inspection
from the arrow directions on the free body diagrams.

The direction cosine of a rod member with respect to a
particular coordinate axis is given by the projection of the
length of the member on that axis divided by the member length.
For example, cos yl, = 18/30 and cos ylY = 24/30. It can be seen
that when direction cosines in this form are substituted into
Eqs. [3.2], or any of the equilibrium equations that can be
written at the other nodes, the ratio n~/L~ will appear for each
rod i. Then by defining new terms k~ = n~/L~ called the ‘Itension
coefficients~l (Ref. 3.11), member force components are
represented as the product of the tension coefficient and the
projection of the member length along the corresponding
coordinate axis. Using the tension coefficients instead of Eq.
[3.2], the equilibrium conditions can immediately be written as

PI -18kl + 32k~= O [3.3a]

-P~ -24kl - 24kt= O [3.3b]

Although it was simple to determine the signs in these
equations by inspection, the signs above could readily be
established automatically. One way to do this would be to apply
a conceptual shift of the origin of coordinates to the center of
each node at which the equilibrium equation is written and to
consider whether or not the projected lengths are in the positive
or negative coordinate directions with respect to the new origin.

We now consider
loading is PI = 1.00
loading is Pz = 1.00
following is readily

First Case

two independent loading cases, where the
for the first case with Pz = O, and the
for the second case with PI = O. The
obtained from Eqs. [3.3]:

~~
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?&I = -& 3.3b

& = -PJ50 3.3a

second Case

= 32kz/18 3.3a

= -18 Pz/(24*50) 3.3b

can be found from equilibrium in the X direction at the right
end support. That is

-50k~- 32k~ = O; or LB = -0.64 kz

The equilibrium equations were established by assuming all
the rods to be in tension. Whenever the tension coefficient is
computed to have a negative algebraic sign the implication is
that the rod force represents compression. The analysis for the
rod forces is completed in the following table:

I II PI = 1.00 I Pi = 0.00

3.2.2 pis~lacements of a Three-Bar Truss

Hookts Law can be used to compute the extension of an
elastic rod subjected to a tensile load, or equivalently, the
shortening of a bar due to a compressive load. The law is

CJ =&

in which
a is the stress (force per unit area)
& is the strain (change in length per unit length,
E is the modulus of elasticity (Young~s modulus)

[3.4]

Since the strain is non-dimensional, the modulus will have the
same units as the stress. (We will not assign dimensional units
here, but rather we will assume that dimensional quantities have
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consistent appropriate units.) Representing the rod area as A
and the extension as e, in terms of the prior notation, we have

a = n/A [3.5]

and

&  = e/L [3.6]

Then from Eqs. [3.4-3.6], it follows that

e = nL/AE [3.7]

For illustration, arbitrary values are assigned for the rod
areas, PI and P,, and E = 10 x 106. The comrmtations for the rod
extensions are ‘completed in the table below”:

ROD L A PI = 2 x 104 PI= 0.0
P~= 0.0

n(xl0-4)- e ‘2:4*n(x10 )

1 30 2.0 1.2 0.018 -3.2

E

-0.048

2 40 3.2 -1.6 -0.020 -2.4 -0.030

3 50 4 1.28 0.016 1.92 0.024

A physical requirement for the deformed truss is that the
configuration with the applied loading must provide for fitting
the extended rods together without gaps or interference. The
application of this principle is illustrated conceptually in
Figure 3-2. The eff~ct of-the second loading case-is considered.
Although the scale of the rod extensions has been greatly
exaggerated, the figure is qualitatively accurate. The approach
is to draw arcs with radii equal to the original lengths and to
locate the new positions of the nodes at the intersection of the
arcs. The restraint in the Y direction provides a simplification
here because the displaced position at node 3 requires the new
location to be shifted by the extension of rod 3 in the positive
X direction (us = 0.24) and to have no displacement in the Y
direction (vS = O). The new position of node 2 is found at the
intersection of an arc with radius of Lz -0.030 drawn from the
new location of node 3 and an arc with radius of LI -0.048 from
the fixed location of node 1. Consequently, the new location of
node 2 shows that U2 is positive and Vz is negative with an
obviously larger magnitude than U2.

In the years before computerized structural analysis
matured, graphical analysis was frequently the means used to
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compute truss deflections. A science of graphic statics was
developed to simplify the procedure just described and to
overcome the impracticality and inaccuracy of graphics that
results from the several orders of magnitudes of differences in
extensions when compared with the original lengths. Essentially,
the need to represent member lengths as radii was eliminated and
the arcs, such as in Figure 3-2, were replaced by tangents drawn
perpendicular to the original directions of the rod members.
Then a subsequent correction diagram was developed to ensure that
the deflected configuration passed through the restrained nodes.
The graphical procedures tended to become very difficult with
complex planar trusses and were hopeless when applied to three-
dimensional space. Nevertheless, understanding of the
methodology of graphical analysis can provide an appreciation of
structural behavior that may not be available from the much more
comprehend ive, but abstract, mathematical analysis.

There are several ways to compute deflections analytically.
One well-known method is the Method of Virtual Work. This is
based upon the principle that in a conservative structural system
the work done by the external loading is equal to the internal
energy stored within the structure. Note that work ancl energy
are dimensionally equivalent and that work is the product of
force and the component of displacement aligned with the force
(the dot product). When a hypothetical “virtualt! load is applied

‘to the structure, this loading will cause I$virtualil forces on the
internal members of the structure. Assume that the virtual
loading is applied first and that the real loading is applied
subsequently. Then the added external virtual work will be the
product of the virtual loading and the displacements of the
Ilrealll loaded structure. The added internal energy (wcmk) of the
members will be the product of the internal forces caused by the
virtual loading and the extensions caused by the real loading.
In practice, it is customary to apply a single-unit virtual load
in the direction of the desired displacement component at any
node whose displacement is to be determined. Therefore, equating
the external virtual work to the virtual internal stored energy,

P v AR = X nv e~ [3.8]

in which Pv is the external virtual load
A, is the displacement of the real structure
nv is the internal member force for the virtual load
e~ is the extension of the member for the real load

and the summation on the right-hand side is taken
over all members of the structure

Equation [3.8] applies in a generalized sense. That is, it
includes generalized forces (forces and moments) and generalized
displacements and extensions (translations and rotations).
Therefore, work and energy are the products of forces times
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translations, or else, moments times rotations. In the case of a
structure consisting entirely of rod members, e~ is given by Eq.
[3.7] and the displacement component at any point where a unit
virtual load (Pv = 1.0) is applied parallel to that component
becomes

Ua = ~ nv n~ L/AE [3.9]

where u. is the displacement component parallel to the X, Y, or Z
axis (u, v, or w) , and nv and n~ are the rod forces for the
virtual and real loading, respectively. Then the displacements
at node 2 for the Three-Bar Truss can be developed in the
following table:

ROD L/AE nv

(xlO’)
n@vL/AE (X102)

(xTo-’)
u v u v

1 1.50 -3.20 0.60 0.80 -2.880 -3.840

2 1.25 -2.40 -0.80 0.60 2.400 -1.800

3 1.25 1.92 0.64 -0.48 1.536 -1.152

E 1.056 -6.792

Therefore, at node 2 we have

U2 = 0.01056
V2 = -0.06792

which can be compared qualitatively with the graphical
construction in Figure 3-2. Note that Eq. [3.9] can be
constructed to get the deformation vector d (Eq. [2.20]) at each
node of the structure. Also the terms L/AE in the second column
of the table above are referred to as “element flexibilities.”
These terms represent the extensions of the rod elements for unit
member loads.

3.2.3 Displacements bv Matrix Formulation

A vector nv in Eq. [3.9] represents the internal member
forces for a unit external loading applied at a specific node in
a specific direction. Then it follows that any particular vector
of internal forces for some real external loading P~ can be
constructed as the product of a matrix B with columns to contain
an appropriate set of nv vectors post-multiplied by the real
loading P~. The matrix B will have the form

B = [n, n2 . . . . ..O.. n,] [3.10]
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where each n~ is the internal force vector for a unit external
load at a particular degree of freedom. A vector of internal
forces for a real external loading can be constructed as

n~ =B{PJ [3.11]

and matrix of “real’! internal forces n for a set of external
loadings is obtained by substituting a matrix P on the right-hand
side of the above equation to contain all the P~ columns of
external loading. That is

n.Bp [3.12]

The matrix of internal member forces for a set of external
virtual unit virtual loads is actually the B matrix post-
xnultiplied by an identity matrix, which is equivalent to B.
Also, a diagonal matrix f, called the “element flexibility
matrix,~’ is constructed to contain all the member L/AE
flexibility terms. Equation [3.9], in conjunction with Eqs.
[3.11] and [3.12], can then be written in matrix form to provide
U, the matrix of displacement vectors for the set of external
loadings P as follows:

u = BtfBP [3.13]

The first three matrices on the right-hand side of Eq.
[3.13] are usually combined and called the structure flexibility
matrix F, so that we have

u = F P [3.14)

in which

F =BtFB [3.15]

and the row orders of U, P, B, and F are equal to the numbers of
degrees of freedom in the model (which is approximately three
times the number of unconstrained nodes for a pin-jointed
three-dimensional structure).

To illustrate, using data in the table following Eq. [3.9],

B .

I

0.60

I

0.80 , f = 10-G*

I

1.50 0.00 0.00
-0.80 0.60 0.OO 1.25 0.00
0.64 -0.48 0.00 0.00 1.25 1

and from Eq. [3.15] the computation provides

F = 10-4 [0.1852 -0.0264]
[-0.0264 0.1698]

1 0



Then, from Eq. [3.14], with

[ 1P= lo~ * 2 0
0 -4

u = F P = 10-2 *
[

3.704 1.056
-0.528 -6.792 1

It can be seen that the last column
the computations in the previous table.

of u is consistent with

3.2.4 ~taticallv Indeterminate Structures

Member forces in the foregoing analysis of the Three-Bar
Truss were statically determinate. That is, there was a one-to-
one match in the number of unres,trained displacement degrees of
freedom (two at node 2 and one at node 3) and the number of
internal rod forces to be found. Consequently, there was exactly
one equilibrium equation available for each internal force that
was to be determined. Specifically, the truss, which was two-
dimensional, had a total of six degrees of freedom (two per
node) , of which three were restrained (two at node 1 and one at
node 3), leaving a remainder of three unrestrained degrees of
freedom.

If there were more degrees of freedom than rod members, the
structure would be unstable. For example, if the Y restraint
were removed at node 3, there would be four equilibrium equations
and only three rods. On the other hand, if there would be more
rods than unrestrained degrees of freedom, say as for the truss
in Figure 3-3, the rod forces (7) could not be uniquely found
from the insufficient (5) equations of static equilibrium and the
structure would be statically indeterminate. In this case some
of the rods could be considered as redundant and the structure
would be stable with these rods removed. A requirement for
static equilibrium for a two-dimensional structure is that the
number of rod members should be equal to twice the number of
nodes minus the number of restrained degrees of freedom. The
number of rods for a. three-dimensional truss structure should be
equal to three times the number of nodes minus the number of
restraints. This is necessary but not a sufficient condition for
statically determinate truss structures. It is insufficient
because a structure meeting this criteria could be statically
indeterminate in some local region and unstable in another.

The procedure to analyze a redundant truss structure is to
reduce it to a statically determinate system by conceptually
cutting selected redundant rods or by removing over-restraining
reaction components. The forces in the cut members or the
removed restraints are then treated as additional loads on the

11
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reduced structure. The displacements of this statically
determinate variation of the structure can then be analyzed to
determine the hypothetical gaps between the cut members or the
movement at the removed reaction points. Setting these gaps or
movements to zero provides the means to evaluate the redundant
member forces or reactions. The procedure will be outlined for
the truss in Figure 3-3.

Figure 3-3b shows the statically determinate variation of
the truss. Rod 1 has been selected to be cut and the Y reaction
at node 1 has been selected for removal. The element flexibility
matrix f is constructed as described previously for the seven
bars, but the B matrix is partitioned vertically into the columns
B= associated with the member forces for the loads from the
selected redundant and into the columns B. associated with the
actual external loads. That is

[B B,= B~ . [3.16]

Carrying out the operations of Eq. [3.13], the displacement
vector will contain U= associated with the redundant forces P=
and We associat d with the external loading PO.

T
The result is

rl lr 1

1;1 I B=t f B= Bxt f B, H IP== [3.17]
Bet f B= BOt f B. P*

that
Setting U= equal to zero provides the following equation
can be solved for P=

[B=’ f B=] P, = -[B=t f B.] P. [3.18]

The row equations in the bottom partition of Eq. [3.17] can
be used to produce U. after solving Eq. [3.18] for P=. Also, by
expressing P= in terms of PO, Eq. [3.12] shows how the member
forces of the statically determinate variation are changed
because of the redundant effects. The selection of redundant is
an analyst’s choice; the preferred selection will be the one that
results in the smallest changes due to the redundancy.

In the example truss. of Figure 3-3 the P= vector contains
the indices nl and RI as indicated in Figure 3-3b. B= contains
two columns, one for each of these indices. The order of B= is 7
rows by 2 columns. The order of B. is 7 rows by as many columns
as there are external loadings. The matrix f will have the order
of 7 rows and 7 columns. U= will have two components, one for
the gap in rod 1 and one for the movement at R1. U. can have as
many as one row for each unrestrained degree of freedom and
columns to match PO.

Here, the order of the coefficient
solution of Eq. [3.18] is two, which is

matrix used in the
equal to the order of the
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redundancy. This illustrates a computational advantage of the
Force method compared with the Displacement method; i.e., the
order of linear simultaneous equations to be solved in the Force
method is only the order of the redundancy, while, as it will be
shown subsequently, the order in the Displacement method is equal
to the number of unrestrained degrees of freedom.

For example, if the Displacement method were used to solve
this problem, the coefficient matrix would be of order 5. This
would not be a trivial problem to solve without computer aid. A
drawback in the statically indeterminate case, however, is that,
since the selection of redundant is arbitrary, it is necessary
to choose an appropriate set of redundant. An inappropriate
selection could lead to numerical conditioning problems and
inaccurate results. There have been attempts to automate
treatment of redundant by the Force method (Ref. 3.12), but the
numerical effort is cumbersome.

.

3.2.5 Other Structural Com~onents

Reference 3.1 discusses the extensions to treat other
structural elements by the Force method. Some of the structural.
components for which elemental flexibility matrices are available
in addition to rods are beams, triangular and rectangular plates,
shear panels, and three-dimensional tetrahedra.

The method is particularly simple when applied to beams,
such as in a building frame. For example, a simple ‘beam element
of span ‘fall is shown in Figure 3-4. The internal forces for
which the element flexibility is developed are the bending
moments m~ on the left side and m~ on the right side. The
directions shown - clockwise on the left and counterclockwise on
the right - indicate the sign convention for positive bending
moments. Neglecting the effect of deflections due to shearing
strain energy (which could be included if desired), the
flexibility matrix of a beam element can be shown to be

f = a/(6EI) [2 1 ]
[1 21 [3.19]

where I is the bending moment of, inertia and f provides the end
rotations for the effect of end moments.

Figure 3-5 shows a simply supported beam with a transverse
load P at the center. It is modelled by two beam elements, each
of span a = L/2. Strictly speaking, when computing the
deflection at the center, elemental flexibility matrix f of the
beam structure would be a four-by-four diagonal block matrix with
two-by-two flexibility matrices (according to Eq. [3.19]) on the
diagonal, and the B matrix would have four components to
represent the moments shown in the figure. ,However, a
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simplification is available by taking into account that the
moments at the two supports are zero and that the moment at the
junction of the two elements is the same on each side of the
centerline. Then the first and fourth rows and columns of F can
be eliminated and the remaining two diagonal terms can be summed
into a single term. Therefore, we have the simplifications
B = L/4 and f = L/(2EI) * (2+2)/6 = L/(3EI). Performing the
multiplications of Eq. [3.15] we have F = L3/(48EI), which is a
well-known result that has been obtained here almost by
inspection.

3.3 DISPLACEMENT METHOD

It was shown previously that with the Force method it was
first necessary to establish the member forces to compute the
extensions and then after that the displacements could be
obtained. In contrast, the Displacement method finds the
displacements as the first step and from these can provide the
member forces as a second step.

The key matrix of the Displacement matrix is the structural
stiffness matrix K. By definition the stiffness matrix contains
the forces that must act on the structure when unit displacements
are imposed in turn on each particular degree of freedom and all
other degrees of freedom are restrained (by the forces) to be
zero.

The Displacement method is not considered to be as readily
adaptable to intuition as the Force method; it is often possible
to visualize the displacement vector, which is one column of the
flexibility matrix, caused by a particular unit load. For the
Displacement method, the forces that represent one column of the
stiffness matrix that are necessary to provide a single unit
displacement while preventing all other displacements are not as
obvious.

the
The fundamental Displacement method relationship, which is

dual of Eq. [3.14], is

P ‘ K U [3.20]

An initial computation task is to generate K, which is a
summation of the stiffness matrices k of all the component
structural members. Then, when the external loading P is
assembled, Eq. [3.20] is solved for U. One frequently employed
method of solution will be described in Section 3.3.4.

Whenever the stiffness matrix K and the flexibility matrix F
represent a matching set of degrees of freedom, these matrices
form an inverse pair. Both matrices are symmetrical, which
implies that the displacement at degree of freedom i for a unit
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load at degree of freedom j is equal to the displacement at
degree of freedom j for a unit load at degree of freedom i.
Correspondingly, the force at degree of freedom i for a single
unit displacement at degree of freedom j is equal to the force at
degree of freedom j for a single unit displacement at degree of
freedom i.

A major advantage of the Displacement method is that
redundant do not have to be counted or identified and
redundancy does not affect the computational procedures. On the
other hand, the solution of Eq. [3.20] for U could entail the
solution of a system of linear equations in the order of
thousands, which is a highly computer-intensive operation.
order of the linear equation set to be solved in the Force
could be trivial in comparison.

3.3.1 Rod Element Stiffness Matrix

Equation [3.7] can be rearranged to provide the force

The
method

n i n a
rod member for-a known extension e-in tefis of the length L,
cross-sectional area A, and modulus of elasticity E. Thus

n = AE/L e [3.21)

and we have the stiffness relationship for the rod element, e.g.

n = k e [3.22]

where k = AE/L, is sometimes referred to as the ‘Ispring constant~l
of the rod. That is k is equal to the force to provide a unit
extension.

Figure 3-6 shows an extended rod subject to force n. The
rod is connected to the nodes a and b as shown in the figure and
a local coordinate system is aligned with the axis of the rod.
The extension of the rod is e = ~-~, where the arrow shows the
positive direction of the local axis displacements, U. Then the
stiffness relationship for the rod in the local coordinate system
is

n =k[l -1) {~}
{u} [3.23]

The components of a transformation from the local u
coordinate system of the rod to a two-dimensional global X, Y
coordinate system of a structure are shown in Figure 3-7. In
Figure 3-7a the components of the extension M along the local
axis are resolved into u and v along the X and Y axes,
respectively. In Figure 3-7b the components of the rod force n
are resolved into the components nX and nY along the
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corresponding axes. Direction cosines yX and yY are identified as
cos eX and cos 6Y, respectively. Then, performing the
transformations at both ends of the rod (ends a and b of Figure
3-6), we have

{Us} =Iyx yy o o 1 {Ug)
{lb) ~ o 0 y. y, J {v.) [3.24]

{u,}
{v,)

(%. ) { Y,}
{ nya ) =n {Y,)
{ ‘xb ) { -Y.) [3.25)
{ ‘yb } { -Yy )

By substituting Eqs. [3.24] and [3.25] in Eq. [3.23],, the
result can be given exactly by Eq. [3.22], but now n and e are
expressed in the global coordinate system as

n = {nX, nya
nXb nY~ )t [3.26a]

e=lua ‘v, u, Va J’ [3.26b]

and k in Eq. [3.22] is replaced by

in which for a two-dimensional problem

k.=kz= AE/L ~ Y.’Y, YxYy 1 [3.28]
~ YxYy llyYy J

In three-dimensional space with coordinate axes X, Y, and Z
Eq. [3.22] is again valid, however the pairs nX and nY are
replaced by the triplets nX, nY, and nZ, and the pairs u and v are
replaced by the triplets u, v and w, and k, in Eq. [3.28] is

.“ replaced by

f ExYy YxYy Y)(YZ  1
k. =k~= AE/L IY.YY YyYy YyYz I

~ YXYZ YyYz YZYZ J
[3.29)
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The stiffness matrices of the rods in the Three-Bar Truss
will be developed explicitly with the help of the following
table:

ROD I L/AE I AE/L I ‘Y.

x 106 x 10-6

1 1.50 0.6667 18/30

2 1.25 0.8000 32/40

3 I 1.25 10.8000 !50/50

l’y
I

‘)’%’)’%

-&+-H-

YxYy
I

YyYy

Then, from Eq. [3.28] the kz partitions of the rod stiffness
matrices are computed as:

Rod 1 k2 = 106 ] 0.240 0.3201
~ 0.320 0.4201

Rod 2 k2 = 106 ~ 0.512 -0.384]
[ -0.384 0.2881

Rod 3 kz = 106 [ 0.800 0.0001
[0.000 0.0001

The above 2-row, 2-column partitions of the rod stiffness
matrices can be expanded to 4-row, 4-column stiffness matrices
according to Eq. [3.27]. The element stiffness matrices are
square and symmetrical. They will be used to construct the
structure stiffness matrix in the following section, and it
follows that this will also be square and symmetrical.

3.3.2 Structure Stiffness Matrix

The stiffness matrix of the full structure will have row and
column indices for all of the degrees of freedom of the
structure. For example, the column indices for the Three-Bar
Truss will represent the displacements (ul VI Uz V2 us vi) . The
row indices will represent the matching set of external forces or
reactions (PX1 PY1 Pxz PYZ PX3 PY3)  ● The stiffness matrices of the
rod element are entered into the structure stiffness matrix
according to the correspondence of the element indices with the
structure indices. Specifically, the element stiffness matrices
will be entered to correspond with the following structure
indices:

R o dl [UIV, U,V2]
Rod2 [U2V2U, V,]
Rod3 [U1V1U3V3]
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.

When the stiffness matrix for more than one element
contributes to a particular cell of the structure stiffness
matrix, the contributions are added. Assembly of the structure
stiffness matrices as just described is called the I’Direct
Methodtt of assembly. There are alternative ways for assembly,
but the direct method is prevalent.

The assembled structure stiffness matrix K, for the Three-
Bar Truss becomes

1.0400 0.3200 -0.2400 0.3200 -.8000 0.0000

0.3200 0.4267 -0.3200 -0.4267 0.0000 0.0000

-0.2400 -0.3200 0.7520 -0.6400 -.5120 .3840

-0.3200 -0.4267 -0.0640. 0.7147 .3840 -.2880

-0.8000 0.0000 -0.5120 0.3840 1.3120 -.3840

0.0000 0.0000 0.3840 -0.2880 -.3840 .2880
J

The rank of K, above is three, which is equal to the number
of rods. Since the matrix is of order six (two times the number
of nodes) , it has three singularities. Physically, these
singularities represent possible rigid body modes of the
structure. A rigid body mode represents a displacement vector
that could occur-in the-absence ~f external fo~ces. For example,
three possible rigid body modes for this structure could be: 1) a
translation in the X direction, 2) a translation in the Y
direction, and 3) a rotation about an axis perpendicular to the X
Y plane. Consequently, K,, since it permits rigid body
displacements, is referred to as the “unrestrained~t stiffness
matrix. It is necessary to apply restraints to this matrix to
remove the singularities.

The restraints for the Three-Bar Truss can be found by
inspection of Figure 3-la. These are the u and v displacements
at the left end node (node 1), and the v displacement at the
right end node (node 3). These correspond with the first,
second, and sixth rows and columns of K,. Removal of these rows
and columns would result in a stable structure with a non-
singular stiffness matrix of rank 3. This is consistent with the
criteria given in Section 3.2.4 that the number of rods (three)
should equal twice the number of nodes (2 x 3) minus the number
of restraints (3).

The singularities in the unrestrained stiffness matrix can
be treated by rewriting Eq. [3.20] in partitioned form. The
partitions in the following expression use the subscripts r and u
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to represent restrained and unrestrained. The load vector P is
partitioned into P,, the reactions at the restrained degrees of
freedom, and Pu, the external loads at the unrestrained degrees
of freedom. The displacement vector is ~artitioned into U. and
Uu to correspond witfi the load vector.

.
~hen, &l..- -.-&:&:A-Aa

form of Eq. [3.20] is

{PI) = f K.r 1
I Q,

{u, )
{p”) 2: J {Uu)

By expanding the lower row equations and

~u u. = P“-%r u,

which can be solved for Uu since Pu and U= (if
prespecified. Solution of Eq. [ 3.31] is the
task of the Displacement method.

b.11=  &JaLV.Lb4UJI=U

[3.30]

rearranging we have

[3.31]

not null) are
major computational

Once the displacements at the unrestrained degrees of
freedom are found from the equation above, the reactions can be
recovered from the upper row equations of Eq. [3.30]. Thus

P, = K.r U, + K,uUU [3.32]

Specifically K,, for the Three-Bar Truss is obtained by
removing the first, second, and last row and column of K,. Then
the remaining three rows and columns are associated with the
unrestrained displacements (uz Vz U3) . This matrix becomes

1

0.7520 -0.0640 -0.5120

Ku = 106 x -0.0640 0.7147 0.3840

-0.5120 0.3840 1.3120

J

Then the unrestrained displacements of the Three-13ar Truss
are obtained by solving

[2X104 o 1hull = *

o -4X104J

from which the result is

{u,} I 3.704 1.056~
{v~) = 10-2 x I -0.528 -y;::~
{U3} [1.600 .

The final steps of the Displacement method are to compute
the internal forces in the members (which can be used to
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determine the stresses). This can be accomplished readily from
Eqs. [3.23] and [3.24].

3.3.3 Jmut Data for Commter Analv sis.
The simple example of the Three-Bar Truss structure covered

the typical steps that would be performed by a finite element
computer program. These programs operate on personal computers,
workstations, or mainframe computers to analyze antenna
structures with many thousands of degrees of freedom and members.
Prior to the use of these programs the analyst must develop an
appropriate idealization of the actual structure, prepare a
mathematical model of the idealization, either by hand notes,
or by drawings and sketches, or with automated assistance. The
mathematical model is converted to input data for the computer
program in the form of records that resemble punchcard input,
which is a carryover from the days when the input to a computer
was primarily in the form of the, now-archaic IBM punchcards.

In preparing the data, the analyst can supplement or replace
manual data generation and employ preprocessor programs,
computer-aided design, or automated data generation procedures.
The existing capabilities to assist in input data are too
widespread and diverse to be covered here. Instead, we will
consider the typical input data itself without being concerned
with the machinery to develop it.

The essential input data for static loading deformation
analysis consists of the following descriptions as a basis:

a) Nodal geometry (coordinates).
b) Elements and connectivity (type and associated nodes).
c) Restrained degrees of freedom
d) Element properties (cross-sectional).
e) Material properties (with modulus of elasticity as a

minimum and other material constants such as density,
thermal coefficients, and terms of the material
stiffness matrix when necessary).

f) External loading.

., Figure 3-8 shows a specification for the input data of a
MATLAB finite element analysis program. The input records are
the rows of the specific matrices provided for each type of data.
The integer numbers arranged above the first row of each matrix
indicate the column of the matrix for the entries. Adclitional
data that can be input relate to the user~s output requests, such
as displacements, reactions and forces. The output of even a
moderate size of structure model can be voluminous, ancl it is
worthwhile for the user to be selective and to request only
critical information.

This data format is similar to that of the NASTRAN program,
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except that the NASTRAN input is not contained in matrices, but
in individual records with a mnemonic in the columns of the first
field of each record. NASTRAN records are 80 ‘~cardtl columns wide
and are subdivided into ten fields of eight columns each. The
NASTRAN program and the input card format are widely known and
understood. Consequently, a closely related format was adopted
for the MATLAB structural analysis program. The NASTRAN input
records can also be compressed to provide the same information in
a free-field form.

Some notes on the data contained in the particular matrix
columns of Figure 3-8 are given in Table 3-1. The specific data
input to the finite element program for analysis of the Three-Bar
Truss are shown in Figure 3-9.

3.3.4 Solut ion of the Load Dis~lacement Problem

In a small problem such as the Three-Bar Truss, or even one
that is one or two orders of magnitude larger, no special
techniques are needed for the programming strategies, data
management, or the numerical algorithms. However, production
type structural analysis computer programs are developed with
careful, and often innovative attention given to efficient and
effective ways to handle and process the sometimes overwhelming
amount of associated data. Historically, the scope of finite
element structural analysis complexity and computer capability
have kept pace with each other, and both have grown rapidly.

The solution of Eq. [3.20] represents the maximum imposition
on the computer capability in terms of data storage and
computation time. This phase of computer execution can be one-
half or more of the total. At the outset, recognizing that the
structure stiffness matrix and the element stiffness matrices are
symmetrical provides one major reduction in storage. Then
recognition of the sparse nature of the stiffness matrix provides
another way to condense the storage space. The matrix is sparse
because the nodes represented within the stiffness matrix are
connected only to adjacent nodes. Therefore, each single row
assigned to the stiffness matrix to represent one degree of
freedom could contain only the one or two dozen coefficients
associated with the adjacent nodes. This row will have as many
columns - possibly thousands - assigned to it as there are
degrees of freedom in the structure. Therefore, the row will be
mostly empty except for the relatively few coefficients for the
adjacent nodes. This emptiness leads to stiffness matrices that
can be less than 1 percent populated.

Conceptually, the solution of the load deflection equations
could be expressed as

u = X-lp [3.33]
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However, the computation of the inverse of the stiffness
matrix could be a formidable task except for small matrices of
orders less than a few hundred. One of the preferred ways to
solve Eq. [3.20] is to decompose the stiffness matrix into
triangular factors by Gaussian elimination. The factors are
applied in two subsequent stems - forward substitution and
b~~kward solution - {o
is outlined below:

The factorization

produc~ the

produces

displacements. The procedure

[3.34]

where ~

It

Xu

where P
[3.20a]

and ~ are lower and upper triangular matrices.

is customary to write Eq. [3.20] in the form

= P . [3.20a)

is referred to as the “right-hand side.” Therefore, Eqs.
and [3.34] provide

&Qu=P [3.35]

Next the equation

&Y=P [3.36]

is solved for Y. This step is the ‘Iforward substitutional step,
and it is an explicit solution step that proceeds downwards along
the lower triangular matrix to produce Yl, Y2, etc. frc)m the
preceding values. The next step is obtain U by solving

QU=Y [3.37]

This step is the backward ~lsubstitutionti step and proceeds
upwards from the bottom of the upper triangular matrix to
produced the last component of U first and each next higher
component in turn from those already determined.

The major computations in this procedure are to decompose
the stiffness matrix into the factors. Once the decomposition
is available, the forward and back substitution to process
numbers of right-hand side vectors is performed with only a
relatively small effort.

One way to perform the decomposition is to start with the
upper triangular portion of K and to modify each row c~f the
triangle by a subtractive correction that is contributed by the
rows above the row that is being modified. The algorithm is

Uij = K,, - ~-:-’ U@ %j/%cl [3.38]
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The lower triangular matrix ~ is obtained by dividing each
row of Q by its diagonal term and taking the transpose. A common
variation of the ~ decomposition is to let Q be the transpose of
L and introduce a matrix D, which contains the reciprocals of the
diagonals of the prior Q. This leads to the well known LDl!
decomposition of K in which ~ is the same as ~t, both have unity
on the diagonals, and only one of them has to be stored.

The decomposition as described above entails dividing each
row by the diagonal of that row to obtain the lower triangle. A
very small divisor could be a warning of instability of the
numerical process or also of instability of the physical
structure. The numerical singularity (Ref. 3.13) is defined as
the smallest ratio of the diagonal divisor of any row of the
decomposition to the diagonal of the original stiffness matrix of
the row. This diagonal ratio provides an easily obtained
estimate of the condition number of the stiffness matrix; and the
rule of thumb is that the absolute value of the exponent of the
condition number indicates the number of digits of accuracy lost
in the computations. We have found that models are suspicious
when the magnitude of the exponent of the diagonal ratio is
greater than about five, but that three or less can be considered
“robust”. In particular, when the diagonal ratio approaches zero
(say l*lO-ID or worse) , it is possible that the structure has
degenerated to a mechanism.

The decomposition will not preserve all of the sparsity of
K. It can be seen from Eq. [3.38] that although a particular Klj
is null, there will be a contribution to the decomposition if any
U~j and ~i from an upper row q are both not zero. The
contribution is sometimes referred to as “fill,il which results
from “rain” falling down from an upper row in the “same column.

3.3.5 llatrix Bandwidth and Wavefront

According to Eq. [3.38], if Kij is empty and if there are no
terms in column j of the stiffness matrix above the term in row
i, the decomposition will be empty in position ij. Thus the
original sparseness of K will be preserved in this case. Large-
capacity computer programs for structural analysis operate most
efficiently when the computational procedure is formulated to
capitalize on sparseness. Sparseness is used to advantage by
confining the computational operations to a compact region
densely populated with non-zero coefficients and by omitting
operations for the empty region in which the coefficients are
zero.

One measure of sparseness is the matrix bandwidth. The
half-bandwidth at any row of the stiffness matrix is the number
of columns from the diagonal to the furthermost term of the row.
There is no need when generating the decomposition to store or
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process any of the zeros of a symmetrical stiffness matrix that
are beyond the half-bandwidth. The maximum bandwidth is the
maximum of all of the row bandwidths; the maximum is important
because it is typically used to set the storage space for the
decomposition and the scope of the processing. Another common
measure of sparseness is the matrix wavefront (Ref. 3.14). The
wavefront at a row is the number of active columns that follow
the diagonal element; a column becomes active at the row
containing the first entry for that column, and it remains active
until that column is absorbed into the diagonal at a lower row.

Figure 3-10a shows the nodes and bars of a hypothetical
structure to illustrate wavefront and bandwidth counting. Figure
3-10b shows the nodal connectivity matrix. The wavefront and
half-bandwidth are tabulated on the right. An advantage of the
wavefront method is that the wavefront can be less than, but
never more than, the bandwidth. Another advantage for the
wavefront storage is that one moxe node added to an existing
structure model could be responsible for a devastating increase
in bandwidth, but would add at most one connection to the
wavefront.

Bandwidth or wavefront of the stiffness matrix are greatly
affected by the numbering sequence of nodes and connections
chosen by the analyst. A judicious numbering scheme could
provide a major advantage in computer storage and calculations.
Although the structural stiffness matrix is almost never small
enough to be stored in core, there are reasons to keep one of the
triangular decompositions matrices entirely in core. Storage
needed for the decomposition is proportional to the square of the
maximum criterion (bandwidth or wavefront). Similarly, the
arithmetic to compute the decomposition is also proportional to
the same criterion.

In addition to bandwidth and wavefront, ltfrontal,~l and
llskyline~l are other stiffness matrix storage schemes that
capitalize on sparsity and are conveniently adaptable to the
solution of the load deflection equations. Some of these storage
schemes are summarized in Ref. 3.15.

Structural analysis software programs used in industry often
allow the user the options of employing preprocessor codes to
automatically resequence the nodes to reduce storage and to
expedite the decomposition process. The programs provide a new
nodal sequence in the form of a “was-is~l list, which is
transparent to the user and does not affect the sequence in which
output results are presented. Most of these programs assume that
the number of degrees of freedom for each node are approximately
the same. This simplifies the preprocessing program by allowing
it to operate at the nodal level rather than at the degree-of-
freedom level. Several algorithms have been developed over the
years to improve the sequencing of the connectivity matrix
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(Refs. 3.16 thorough 3.18). Although there is a continuing
search for the ‘foptimum~l  resequencing algorithm, the existing
algorithms do a good enough job to make the analysis of large
structures tractable.

3.3.6 Cent inuum Elements

The wide class of structures analyzed by computer can use
many types of finite elements in the analytical models.
Available elements include rods, beams, membrane, shear and
bending plates of various shapes, curved plates, shell elements,
toroids, ring elements, three-dimensional solids such as brick
and tetrahedrons, etc. Nevertheless, only a minute subset of
these element types are important to antenna structure models.

The rod element, which has been discussed at length here,
predominates in the antenna backup structure. The beam, or bar,
briefly considered in Section 3.2.5, is not frequently a primary
member in antenna structures. Antenna performance requirements
such as those that were considered in Chapter 2 make it necessary
to control surface deformations to very small magnitudes. This
is done by emphasizing stiff structures, which are achieved by
deep trusses composed of rods. The beams are much shallower than
the trusses that can be assembled and consequently are much more
compliant. Although some rods will be connected to allow their
bending stiffness to participate, this stiffness is ordinarily
secondary because the rods are very shallow in contrast to the
depth of the truss that contains the rod.

Nevertheless, there are plate-type elements within
components of the antenna structure other than in the reflector
backup. Some of these components could occur in subreflector
supports, elevation axis wheels, and alidades or pedestals.
These plates act primarily as membrane elements. That is, their
in-plane load carrying capability will overshadow the ability to
carry loads applied normal to their planes. Furthermcme,
although they have some small capability to resist in-plane
bending about an axis normal to the plane of the plate, the
membrane plates are not ordinarily connected to the remainder of
the structure at their exteriors to develop this capability. The
usual FEM models of these plates, which are either triangular or
quadrilateral, represent only the three translation degrees of
freedom at their corner nodes. Their stiffness matrices, similar
to the rods, model only the three nodal forces in terms of the
nodal degrees of freedom.

Rods and bars are two-node “lattice” (Ref. 3.13) elements
that can be modelled accurately with finite numbers of degrees of
freedom. Lattice elements do not introduce discretization
errors; that is, adding nodes to subdivide them into additional
intervening elements will not change their accuracy. For
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example, if the structure of Figure 3-4 were subdivided into many
more than the two bar elements shown, the computed deflection
under the load would be the same. On the other hand, plates are
continuum elements that have infinite numbers of degrees of
freedom and can be modelled only approximately by finite numbers
of degrees of freedom.

The plates that occur in antenna structures are triangular
and quadrilateral membrane plates. The stiffness matrix for a
constant strain, three-node triangular plate can readily be
expressed in closed form. However, the constant strain condition
imposes a constant stress condition also. This makes the plate
overly rigid and therefore detrimental to modelling accuracy.
Although the closed form stiffness matrix is desirable for
computer code generation and processing, it is best not to employ
the triangular plate except when necessary as a transition
between the nodes of an irregular region. The four node
quadrilateral membrane plate is a useful continuum element that
can model a linear stress distribution within its boundaries and
therefore is capable of a higher level of accuracy than the
three-node triangular plate.

The approach in treating continuum elements with the
restriction that only a finite number of degrees of freedom are
available at their exteri”or nodes3 is to postulate continuous
functions for interpolating the interior coordinates from the
nodal coordinates, and also the interior displacements from the
exterior nodal displacements. The “isoparametric!l  elements use
the same interpolation functions for coordinates and for
displacements. These elements can represent irregular shapes and
curved boundaries when necessary.

Generation of the stiffness matrix for the isoparametric
quadrilateral plate entails some engineering mechanics theory and
also a substantial amount of computation. Details of the
procedure can be found in a number of references, including
Refs. 3.1, 3.2, 3.13, and 3.15. The procedure, following the
exposition in Ref. 3.2, starts from the ‘Principle of stationary
energy” (sometimes referred to as the “minimum of the total
potential;$’ see Ref. 3.11).

Broadly, the principle states that~the total potential for a
system in equilibrium is stationary (actually a minimum) with
respect to virtual changes in the” displacements. In an elastic
structure the total potential P consists of the net internal
strain energy ~stored in the structure, and V the potential of
the loads. The net strain energy includes the strain energy that

3Unless special
edges or interiors

additional nodes are established along their
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occurs because of the loading and additional terms that can occur
if there are initial stresses and strains, such as from preload
and thermal effects. The potential of the loads is the negative
(lost potential) of the work done by the external loads, which
include concentrated exterior forces, body forces, and surface
tractions. Omitting the effects of initial stresses and strains,
and body forces and surface tractions, ~ and Y, are given by

~= ~ (~vOIU., ~t?Ee dv), m = number of elements [3.39]

Y= utP [3.40]

In the above, the strain energy is the sum of the strain
energies of all the elements, e is the vector of element strains,
1! is the material stiffness matrix (representing the stress-
strain laws) , and dv represents differential volume. (As defined
previously, U and P are the structure displacement and loading
matrices.)

The strain displacement equations can be used to represent
the element strains in terms of the subset u of the structure
displacements associated with the element. This provides

e = B u [3.41]

where the matrix B is a matrix of differential operators. Using
the above equation in Eq. [3.39], the strain energy can be
expressed as

W= +~ jUtBtEBU dv [3.42]

The element stiffness matrix k is defined from the above
equation by

k= $BtEB dv [3.43]

Therefore, the strain energy is expressed in terms of the element
stiffness matrix and nodal displacements

%- = %~ utku [3.44]

The summation operator above can be removed by recognizing
that U, the structure displacements, is the union of all the
element displacements u, and that K, the structure stiffness
matrix, is the union (and summation) of all the element stiffness
matrices k. As the result we have

P = % U’xu - U’p [3.45]

and the stationarity condition ~P/tNJ = O provides the familiar
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equation

XU=P

The element

[3.20a]

stiffness matrices are obtained from the
integrations in Eq. [3.43]. Quadrilateral plate elements are
fir6t projected onto a local x, y coordinate system in the plane
of the plate. After the stiffness matrix is developed in this
plane, it is transformed back into the original X, Y, Z global
coordinate system of the structure.

The quadrilateral plate is developed in the local x-y plane
by means of an auxiliary ~,q non-orthogonal, non-dimensional,
quadrilateral coordinate system. The local coordinates of a
point of the plate are expressed as

{x) =(N O\{X) [3.46]
{Y} ~0 N]{Y} .

in which X and Y are 4x1 vectors of the local coordinates at the
four nodes and N = [Nl N, N~ Nqj are shape functions.

The displacements within the plate are expressed in te”kms of
the same shape functions as

{u) =[NO1 {U)
tONj{V}

[3.4”/]
{v}

and similarly, U and V are the 4x1 vectors of the displacements
at the corner nodes of the plate.

An example of suitable shape functions has the form

Ni = *(1*X) (ltq) i = 1, 2, 3, 4 [3.48)

in which the signs are established so that each N~ has the value
of unity at one specific corner of the plate. This is possible
because the auxiliary coordinates,are normalized so that ~ and q
have the values *1 at the corners.

The differential operator matrices B in Eq. [3.41] are
applied to the shape functions (as they appear in Eqs. [3.47]) in
the ~ ,q coordinate system. The Jacobian matrix J is established
to provide the transformation from the ~, q coordinates to the
local x, y coordinates. The B matrix is then multiplied by the
inverse of the Jacobian matrix to convert it from the &,q
coordinates to the local x, y coordinates. The integrations in
Eq. [3.43] are performed in the ~,?l coordinates, and this is
accounted for b multiplying

rthe Jacobian IJ . The plate
the integrand by the determinant
thickness is assigned the symbol
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so that the integration, in place of Eq. [3.43], becomes

This integration is usually executed by from two- to four-
point two-dimensional Gaussian quadrature. The stiffness matrix
so obtained has order 8 because at each of four nodes it provides
the correspondence of two force components (p.~ py) with two
displacement components (u, v). After transformation to the
global X, Y, z coordinates, it will be of order 12= The
auxiliary ~,q coordinate system is not needed for a rectangular
plate because operations in the x, y coordinates are performed
conveniently. In that case Eq. [3.43] can be applied directly.

3.4 ANTENNA BACKUP STRUCTURE COMPUTER MODEL

Antenna backup structures, which provide the immediate
supports for the reflector panels, are typically systems of
three-dimensional trusses. The trusses and associated bracing
are composed of rod members such as those considered previously
in the Three-Bar Truss problem. The structural configuration
consists of a set of radial rib trusses interconnected by a set
of circumferential hoop trusses. A top view of a typical radial
rib-hoop truss system was shown previously in Figure 1.-18. The
interior structure within the 360-degree aperture is an assembly
of essentially repetitive modules.

Figure 3-11, reproduced from Ref. 3.19, shows the
construction of 15-degree repetitive module of a typic:al antenna
backup structure. All members of this module can be categorized
as one of ten distinct types. Four of these occur in the rib
truss (Figure 3-lld); they are the top rib chord, the bottom
chord, the post from top to bottom chord, and the diagonal from
the top of one ring to the bottom of an adjacent ring. The hoop
truss (Figure 3-ll,b,c) provides three more Wpf=s: tq>, bottom~
and diagonal (the post is supplied by the rib truss). The
intermediate rib (Figure 3-ha) is actually only a top rib chord
member supported by the hoop truss, a$ shown in Figure 3-llc.
The three remaining member types are a diagonal connected between
the top of one rib at one ring to the top of another rib at the
next ring, a similar diagonal connecting nodes at the bottom of
ribs, and an inclined diagonal connecting a rib top to a rib
bottom at adjacent rings.

The layout in Figure 3-11 was proposed in a design study for
64-meter-diameter antennas. Although there are thousands of
individual rod members in the backup structure, the repetitive’
character of the construction requires only 130 different rod
detailing variations. The regularity of construction and the
similarities in the structural format of many antennas make it
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feasible to design software preprocessor programs to develop the
input data for structural analysis. A half-section analytical
model of this structure requires about 4000 data card records
(such as those described in Figure 3-8). These records can be
generated in a few seconds by a mainframe computer. A general-
purpose antenna structure data generator needs only a few
additional user parameters such as diameter, numbers of rings and
their radii, focal length, and possibly five to ten more option-
defining parameters.

The simplicity of ring and rib backup structure arrangement
makes it both feasible and logical to use a readily interpreted
numbering code. Specific entries in the input records can be
identified with respect to location on the structure without the
need to consult a drawing or other notes for the mathematical
model. The schedule below shows a numberinu code that will cover
most backup structure situations.

BACKUP STRUCTURE NUMBERING SCHEDULE

NODE LABEL: 100*Ring +2*Rib For Bottom Rib Nodes
100*Ring +2*Rib-1 For Top Rib Nodes

ROD LABEL: 10,000*Rib + 100*Ring + TYPE

TYPE
1 Rib Top
2 Rib Bottom
3 Rib Diagonal
4 Rib Post
5 Hoop Top
6 Hoop Bottom
7 Hoop Diagonal
8 Top Node Diagonal
9 Bottom Node Diagonal
10 Inclined Top to Bottom Diagonal

Between Adjacent Rings

FROPERTY LABEL: 100*CLASS + DEL + SLAVE + TYPE

CLASS is an integer assigned to the ring
DEL is a multiple of 20 to permit up to 4 variations

within the ring annulus
SLAVE is 10 only at the Y-Z plane of symmetry

and zero otherwise
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Figure 3-12 shows plan view sketches for symmetrical half
models of antenna backup structures three different diameters.
The sketches show support points at particular bottom nodes of
the rib trusses. These supports are provided by the underlying
elevation wheel structure~ possibly with additional transition
structures between wheels and rib trusses. (Some of the
supporting construction variations can be seen in the first five
figures of Chapter 1.) Backup structure support models for
structural analysis tend to differ from installation to
installation and do not emphasize repeatability. Consequently,
the data input is prepared ad hoc without significant benefit of
automation aids.

Surface accuracy and microwave precision for these antennas
imposes requirements on the number of supports for the backup
structure. The 15m antenna shown is adequately supported at
three supports (at the corners of an equilateral triangle). The
implied four supports (at the corners of a square) are considered
to be sufficient for the 26m antenna. Eight supports are
desirable for the 40m antenna, and these are assumed to be
provided by a trussed ring girder. The ideal ,ring girder
provides equal, or nearly equal, stiffness. at the reflector
attachments, and it is a design challenge to achieve this. The
radii to the supports for the three antennas of the figure are
about 40% of the maximum radii. An alternative concept for
backup structure support is a compact central hub weldment. The
rib trusses in this concept are essentially cantilevered from the
hub .

An innovative concept for equal stiffness backup structure
supports has been used successfully for the 100m radic~ telescope
near Bonn, Germany (Ref. 3.20). This concept provides a series
of supporting bars that are arranged on the generators of a cone.
A similar arrangement is shown in Figure 3-13, which is taken
from Ref. 3.21 . There are 24 identical cone bars employed. The
attachment points to the backup are indicated by the points
marked ~cS~l in the plan view of Figure 3-ha. Figure 3-13 shows
views that define the transition structure from the elevation
bearing to the backup structure and incorporate the c:one bars.
Unfortunately, this arrangement calls for structure below the
antenna along the focal axis, and this structure blocks the clear
passage through the vertex of the reflector that would be needed
for a beam-waveguide antenna (Figure 1-8).
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3-1.

3-2.

3-3.

3-4.

3-5.

3-6.

3-7.

3-8.

3-9,

Three-Bar Truss:

Deformed Truss

Redundant Truss:

FIGURES

a) Layout; b) Free Body

a) Redundant to Second Deuree: b)
Statically Determinate Conversion

.

Beam Element

Loaded Beam

Rod Extension

Global Components: a) Extensions; b) Forces

Input Data Matrices for Matlab Finite Element Program

Three-Bar Truss Problem Input Data

3-1o. Connectivity Counting Example: a) Example Structure; b)
Connectivity Matrix

3-11. Backup Structure Framing Matrices:

3-12. Backup Structure Support

3-13. Cone Support for Backup Structure

Table 3-1. Data Preparation Notes for Finite Element
Structure Analysis
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This is \wpwin\mymemo\ feminch3

Input Data Matrices For MATLAB Finite Element Procrra~

. ~SSENTIAL DATA
2

nodes =[n~d x ~ ~
(5)
Permanent

restr

rods

prop

mater

force

analyze

restraint
(Optional)

● ● ✎☛☛☛✎  ✎ ✎ ✎ ✎ ● ✎ ✎ ✎ ✎ ● ● ● ● ✎ ✎ ✎ ✎ ✎ ✎ ✎ ● ✎ ✎ ✎

2 1
=[n~d component

(=1 or 2 or 3
or any combination)

3]. ● . . . . . ..*. . . ● ● . .
1

=[e~d
4

pid nid~ nid~
● ● ✌✎  ● ✎ ● ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ● ✎✌✎ ● ● ✎ ✎ 1

2
=[p:d

3 (5) (6) (7)mid area { amin amax
{option.for~;~s .))

● ***. . . . . . ● ● . . . ● ● ● . ..* . )
=[m;d E2 3

dens
. ...0... . ..0...  . . . . . . . 1

3
=[f~d n~d 4 5

factor
6

fx fy fz
● . . . . . ● . . . . ● ● ● ● . . . ● . . . ● ● . . ● . ● ● ● . . ● . . .

1

=[fidl fidz . . . . . . . . ..fidn]

OPTIONAL DATA

forcel 3
=[f~d ni~ 4 5

factor nid. nid~
● O.*... ..0.00.  ..00.0. . . . . . . . . .. *...*. . .

1
grav =,[ fid

2
factor w; ~ wg
(On weight)

● ● ✎ ✎ ● ☛✎✎✎ ✎ ✎ ● ● ● ✎ ● ✎ ● ● ● ● ● ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ● ● ✎ ✎

)
2

conwt =[n~d weight
● ● . . ● . ● ● ● ● ● . ● . ● ● ...0. .0  ● ● ● . ● . . ● ● ● .

1
2loadcomb =[s~d 3 4 (pairs)

scale fl fid f~ fidi . . .(must be rectangular, fill out with ze~~~”~o match largest
row)

● . . ● ● ● . . . . . . . . ● . ● ● . . ● . . ● ● ● ● ● ● . . . ● . . . . . . .
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, ,- CH3BAR,M ,-

‘Fd&kz/2””% July , Updat

, T s is CH3BAR.M, 3 bar with sample params Ch.3
% Jan 29,1993 THIS IS THREEBAR.M

nodes=[ I
2
3

restr=[ 1
3

rods=[ 10
20
30

prop=[ I
2
3

mater=[ 10
force=[ 21

23
analyze=[21

o
18
50
12
2];
1
2
3
10

10
10

1.e+07
2
2

23];

o 0 3
24 0 3
0 0 3];

1 2
2 3
1 3];
2 1.2
3.2 1.2
4 1.2];
1];
2oOe+04 1.
-4.0e+04 o

Figure 3-9

Three Bar Truss Problem Input Data

o 0
1 o];
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3

4

5

6

7

8

9

/ve

-. -— — -————

WAVE

4

6

6

5

4

3

2

1

BAND

8

7

6

5
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TABLE 3-1

Data Preparation Notes For Finite Element Structure Analysis

=
Matrix Notes Equivalent

NASTRAN
Mnemonic

nodes c.1 nid is an arbitrary label for the GRID
node
c.2-4 contain the coordinates
c.5 any combination of the digits
l,2,0r 3 to indicate a restraint in the
X, Y, or Z directions(see also restr
below)

restr c.1 points to a c.1 in nodes SPC,SPC1
c.2 similar to c.5 of nodes (similar) -

rods c.1 eid is an arbitrary label CROD
c.2 property identification, points to CBAR
a ~ matrix identifier

c.3-4 the nodes to which the bar is
connected,points  to various c.1 of
nodes

prop c.1 matches a c.2 of bars ]>ROD
c.2 points to a mater matrix identifier PBAR
c.3 area of the rod
c.5-7 optional, not used in analysis,
but used subsequently in design
optimization

mater c.1 matches a c.2 of prop MAT1
c.2 modulus of elasticity
c.3 density, weight per unit volume

force c.1 arbitrary label for the force set FORCE
c.2 points to a nodes c.1
c.3 multiplier to provide the magnitude
of the force, operates on c.4-6
c.4-6 X,Y, and Z components of the
force

malyze c.1,2,3, etc. fid’s of ,force, see Case
forcel,qrav, or loadcomb set cases to Control
be analyzed

1
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forcel c.1 force set label FORCE1
c.2 points to a nodes C*1
c.3 magnitude of force
c.4-5 the force is applied from the
node of c.4 towards the node of c.5
(see c.1 of nodes)

g r a v c.1 loading set label GRAV
c.2 multiplier to provide the magnitude
c.3-4 component of weight to be applied
in the X,Y,or Z directions
This matrix will generate a weight “
loading matrix using the volumes of the
bars and the densities from the mater
matrix —

conwt c.1 points to a nodes c.1 CONM2
c.2 magnitude of a lumped weight at the
node to be included with all mav
loading sets —

loadcomb c.1 loading set label LOAD
c.2 scale factor to be applied to a
loading combination
c.3 and following odd columns are scale
factors to be used in combining the set
identified in the immediate next column
c.4 and following even numbered columns .’
are set labels that correspond with
analvze matrix cases =

\
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CHAPTER 4

REFLECTOR SURFACE IDADINGS

The mathematics of the surface pathlength error and the
error of the best-fitting parabolic surface were defined in
Chapter 2 in terms of the vector of surface deformations.
Chapter 3 explained how finite element structural analysis of an
analytical model of the structure is used to predict the surface
deformations in response to arbitrary loading. This chapter
considers the modelling of environmental loads that are applied
to the actual structure.

The gravity loading effect is of primary importance because
it is always present during the antenna operations. Additionally,
the gravity loading is deterministic and can be predicted
accurately. The magnitude of this loading, which consists of
the weight of the structure and additionally supported parasitic
components, is invariant during changes in antenna elevation.
Nevertheless, the angle of the gravity loading vector relative to
the antenna surface varies with the elevation. This change in
the relative direction is responsible for a different set of
gravity deformations at each elevation. However, it is possible
to reduce ,the,severity of the loading by aligning the surface
panels accurately at some elevation angle intermediate between
the horizon and zenith pointing directions. The angle chosen for
panel setting is called the “rigging!’ angle (Ref. 4.1). Once the
panels are aligned at the rigging angle the effective gravity
loading at a particular antenna angle consists only of the
change,in loading from the rigging angle.

Other important environmental loads are from wind and
thermal phenomena. These loads are random and are much harder to
characterize than the gravity loading because their occurrence is
statistical. Furthermore, although wind and thermal loading of
postulated intensity might be considered to occur with some
statistical regularity, the spatial distribution of the loading
over the surface is not accurately predictable. Beyond this,
there could also be significant transient components.
Nevertheless, despite some uncertainties, wind tunnel test
experiments make it possible to propose models of the “static”
wind loading; this is a hypothetical av@rage steady-state
condition that has no time dependency. The current knowledge of
thermal loading, unfortunately, is more uncertain than that of
the wind loading. On the other hand, the transient components of
the thermal loading may be less variable than for wind loading.

Additional ‘significant loads to which the antenna can be
subjected are from snowr icel and seismic shock. Antennas are
not expected to provide accurate microwave surfaces when
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subjected to these environments. Hence the effects of these
loadings are ordinarily considered from the standpoint of
strength and safety rather than from the standpoint of surface
deformations. Snow and ice loadings environments are customarily
specified in terms of the layer thickness and weight density.
Consequently the magnitude and distribution of these loads can be
obtained by direct (although possibly, tedious) calculation.
Seismic loading, on the other hand, is stochastic and much more
difficult to characterize. Seismic effects will be considered
later in the chapter on antenna dynamics.

4.1 Gravity Loading

4.1.1 Pathlength Error At Any Elevation

We are concerned With the computation of the pathlength
error from gravity loading at any antenna elevation in the range
osa<90. To do this we capitalize on the linearity of the
structural response. The starting point is Eq. [2.35], which
provides the best-fitting half-pathlength error vectorp. The
equation is repeated below:

P =AU+BE [2.35]

However, from Eq. [2.39] the fitting parameters H can be
expressed as a linear function of the displacement vector U. It
follows then that the best-fitting pathlength error vector is
also a constant linear function of the displacement vector, i.e. :

H = C u [401a]

where the matrix C could be computed from the matrices B~ W~ and
A, and

P = RU [4.lb]

where R = A +B C.

The specific composition of R is shown in Ref. 4.1 (p. 74). It
can be constructed, if desired, from matrices of geometry-
dependent terms and weighting factors. It is important to note
that this is an invariant matrix and is independent of the
displacements. Equation [4.lb] also shows that the pathlength
errors do not depend explicitly on the fitting parameters H, but
rather that H is an explicit function of the displacements that
are implicitly represented within R. Equation [4.lb] identifies
a linear relationship that makes it possible to simplify all
pathlength error computations from gravity and other loading
combinations. The method of computation for gravity loading will
be shown below. In a subsequent chapter it will also be shown
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that the linear relationship between best-fitting pathlength
errors and the displacement vector is pivotal to the procedure we
have chosen for optimization of the structure design.

It was just shown that the best-fitting pathlength error p
is a linear function of the displacement matrix U. The
displacements in turn, on the basis of either the Force method
(Eq. [3.14]) or the Displacement method (Eq. [3.20]), are linear
functions of the external loading. It follows that the
pathlength error vector is also a linear function of the loading
as indicated below using the Force method for illustration:

P=RFP [4.2]

where F is the flexibility matrix (adjusted if necessary to
account for redundant effects according to Eqs. [3.17] and
[3.18)).

It should be noted, however, that in practice it is not
customary to form either the matrix R or the matrix F or their
product. It is usually computationally more efficient to use the
procedures described in Chapter 2 to compute the pathlength error
by forming the associated A and B matrices by explicit summations
and also by including the weighting factors explicitly. The
displacements are almost never generated from a flexibility
matrix, but rather are obtained from a finite element analysis
that uses the displacement method (Eq. [3.20]) formulation.

Figure 4-la shows an az-el antenna in the Y-Z plane at an
arbitrary elevation. The elevation angle a is defined as the
angle of the pointing (Z) axis above the horizon. The positive
directions of the Y and Z coordinate axes, which we always take
to be fixed to the antenna, are as shown in the figure.

The inset diagram shows that the vertical gravity load w has
components of -w cos a and -w sin a parallel to the Y and Z
axes. At some other reference elevation y the loading components
are -w cos y and -w sin y. Figure 4-lb indicates the pathlength
error curve over the elevation range and how the curve is
influenced by a reference rigging angle y at which there is no
pathlength error. Options for rigging angle selection will be
considered later in this chapter.

The symbols PY and PZ are introduced to represent the
loading vectors of the total weight (structure plus parasitic)

lIn contrast to the microwave engineering field, it is common
for astronomers to refer to the “zenith angle~l, which is the
complement of the elevation angle.
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applied in the positive Y and Z axes directions, respectively.
At any elevationcx the change in loading P. from the loading at
the rigging elevation yis

Pa =  [Py P~ ] {n} [4.3]
{c}

in which

n= sin y -sin a [4.4a]

~= Cosy - C o s  a [4.4b]

Substituting Eq. [4.3] in Eq. [4.2] provides the change in
pathlength error p. from the pathlength error at the rigging
angle as

In view of Eq. [4.lb], Eq. [4.5) can be reinterpreted as

Pa = [PY Pzl

where pY and pz are
loadings PY and PZ.

The change in

(~} [4.6]
\z)

the pathlength errors in response to the

mean square
(x can be computed according to

Ssa = [qt ~t ] I P:wPy/Ewi
khtwP,/DJi

The mean suuare errors for the

pathlength error SS. at elevation
Eq. [2.37) as

pytwpz/~wil {q} [4.7]
pz’wpz/~wiJ  {~}

independent loadings Py and Pz can
be recogni~ed in the above equation-and identified as SSY and
SSZ, respectively. The off-diagonal cross-product term is a
covariance and is denoted as Syz. Therefore Eq. [4.7] can be
rewritten as

Equation [4.8] provides the mean square error from the
gravity loading effect. Ordinarily, we assume that the
pathlength error at the rigging angle y is inconsequential in
comparison to the pathlength error effect from the change in
loading. If this is the case, then SS. is the mean square (half)
pathlength error at elevation c%. A method to include the effect
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of the pathlength error at the rigging angle, if necessary, will
be discussed later.

Carrying out the multiplications indicated in Eq. [4.8]
provides the mean square pathlength error in the form below:

Ssa = q2ssy + ~*ssz +2r@yz [4.9]

This equation is of primary importance because it permits
calculation of the pathlength error at any elevation in terms of
only two pathlength error analyses: the pathlength analyses for
the particular loadings Py and PZ.

It is more common practice in the antenna industry to refer
to the rms (root mean square “half”) pathlength error, which is
the square root of the mean square error that has been considered
so far in this chapter. The best-fitting procedures provide that
the mean pathlength error will ordinarily be either zero or close
enough to zero to be ignored. If this is not the case, the
weighted mean should be subtracted as discussed in Section 2.4.1.
Consequently, the root mean square and the standard deviation
will be numerically indistinguishable. Therefore, in the RuZe
equation for antenna gain reduction (Eq. [2.3] or [2.4]), the
standard deviation symbol owas used to represent the root mean
square. Here, we will assume that the notations “d’ and “rms”
are interchangeable h the context of the best-fitting pathlength
error vector. Therefore, for the loadings Py and Pz the rms
terms are

[4.10a]Oy = rmsy= Ssy%
o~ =  rms’, = Ssz+ [4.10b]

Also, the correlation coefficient CRYZ is defined as

CRYZ = Syz/(msy m%) [4.11)

Therefore, in terms of the rms pathlength errors for the loadings
Py and P,, Eq. [4.9] can be written as

rlq = (Tlzrmsyz  + ~zrmsz’  +2q~ CRY, 2XKYXIM3Z) % [4.12]

The correlation coefficient in the above expression is
usually so small that the third term on the right-hand side could
be insignificant . In fact, physical reasoning shows that this
correlation coefficient is expected to be exactly zero for an
antenna that is perfectly symmetrical in construction and weight
distribution about the X-Z and Y-Z planes.

5

The effective loading at any elevation is the net loading
shown in Eq. [4.3]. Since displacements are linear functions of
the loading, it follows that the fitting parameters at any



equalizing rigging

y = @-&

where
e = tan-l (B/A)
b = COS-’ (C/ (A2

and
A = 2ssy -2sy7,
B = 2SSZ -2SYZ

elevation H. can be computed as

Ha= [H, Hz] {n} [4.13]

{c)

where Hy and Hz are the fitting parameters computed for the
loadings PYand PZ.

It is important to note that these two loadings h
themselves have no real physical significance. Rather, they are
mathematical loadings convenient to the foregoing development.
They are aligned along positive coordinate axes in accordance
with a consistent algebraic sign convention. The inset in Figure
4-la shows that any real external gravity loading is a negative
combination of components of these loads. Furthermore, although
it is not difficult to visualize the antenna defOrmatflOn  patterns
that could result from the loadings applied in either the Y or Z
directions, it is more difficult to visualize the deformation
pattern caused by the change in loading (as given in Eq. [4.3]),
and it is even more difficult to visualize the net pathlength
error vectors after the best-fitting operations (Eq. [2.35]) .
Attempts to visualize these patterns without taking into account
the subtractions with respect to
effects of the best fitting have

4.1.2 Rigging Angle Selection

the rigging angle and the
occasionally led to confusion.

TWO criteria possible for choosing rigging angle are: (a)
minimize the maximum rms pathlength error over the elevation
range of interest, and (b) minimize the expected average rms
pathlength error over the elevation range.

Criterion a:

From Figure 4-lb it can be seen that an intuitive way to
minimize the maximum pathlength error is to make the errors at
the extreme elevation ranges equal to each other. Then the
errors at the extreme elevations become the maximum, and these
maxima are smallest when they are equal. It was shown in Ref.
4.1 that for the extreme elevations of O and 90 degrees the

angle is

[4.14]

[4015a]
+Bp)z ) [4.15b]

[4.16a]
[4.16b]
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c. Ssy -ss~ [4.16c]

The foregoing procedure will not necessarily minimize the
maximum pathlength error. A slightly lower maximum error can be
achieved by biasing the error at the rigging angle so that there
is a non-zero pathlength error at this elevation. However, in
calculations for practical antenna designs the reduction in the
maximum error was insignificant. There also was the disadvantage
of a finite error in the vicinity of the rigging angle.
Consequently, the approach above is recommended as the simplest
and most practical.

Criterion b:

We assume that a set of weighting factors H. represent the
probabi.li-ty  of the antenna operating at each elevation. Then the
rigging angle can be chosen to minimizing the H.- weighted
average pathlength error over the elevation range. It can be
shown (Ref. 4.2) that the objective to be minimized is

OBJ= az SSY + b2 SSZ + 2C Syz [4.17]

in which

a’ = COS2y+ ~ H, COS2CX ‘2 COS y ~ H. COS ~ [4.18a]
b’ = sin”y+ ~ H. sin2cx -2 sin YE H. sin a [4.18b]
c = sin~ COSY + ~H, sin cxcos a -cos Y~H, sin~
-sin y ~ H. Cos a [4.18c]

and H. is normalized so that ~ H. = 1.

The expressions for a, b, and c are developed from Eqs.
[4.4], [4.9], and [4.17].

For the antenna observations equally distributed over the
hemisphere from the horizon to the zenith the weighting is the
cosine of the elevation angle. Consequently, the rigging angle
could be chosen to minimize the cosine weighted average
pathlength error. Observation targets equally distributed over
the hemisphere represent a restricted special case, so that the
cosine weighted average error is not generally useful..

On the other hand, when antennas are used for specific
classes of missions, such as for spacecraft communications, it is
possible to derive statistics for typical missions and develop
weighting factors for the associated elevation angle range. One
study of a set of about 15 planetary spacecraft missions during
an 8-year period was described in Ref. 4.2. A set of average
declination angles from the spacecraft missions was assembled and
a set of declination angle weighting factors was computed on the
basis of the time spent at these declinations. The declination
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angle weighting factors were used to compute elevation angle
weighting functions (probability densities) by means c>f the
HA-dec to az-el conversion equations described in Chapter 1,
section 1.4.1.

It was also suggested that these spacecraft missions
traveled in orbits similar to an ecliptic orbit. A set of
elevation angle statistics was developed for a sun-tracking orbit
to test this suggestion. As suspected, it was found that the
elevation angle probability statistics of both types of missions
were similar. Consequently, the simplicity of the analysis for
the solar mission made this a convenient way to estimate the
weighting factors. The solar mission weighting factors are shown
in Table 4-1. Figure 4-2 shows the probability density function
of elevation angles for solar missions as determined from the
weighting factors, and Figure 4-3 shows the cumulative
probability distribution functions. The latitude of the ground
antenna for these figures was 35.4 degrees. Figure 4-2 shows
that the elevation of about 32 degrees predominates and Figure
4-3 shows that the antenna elevation is less than this about 50%
of the time.

The weighting factors are substituted into Eqs. [4.18] to
form the objective of Eq. [4.17]. Then y can be chosen by a
numerical search method to minimize the objective such as by the
method of false position, binary search, golden section search,
or trial and error search. As a specific example, analysis for
the Deep Space Network 64-m Mars antenna at Goldstone, California
via the golden section method provided an optimum rigging angle
of about 35 degrees. Figure 4-4 shows the elevation angle range
performance for the Mars antenna at 8.45-GHz frequency for the
optimum and the 45-degree rigging angles. The weighted average
gain reduction (Eq. [2.4]) over the elevation range is improved
by about 20% with optimum rigging. Specifically, the optimum
rigging angle improves the performance at low elevations and
degrades the performance at the higher elevations, which is
consistent with the probability functions of Figures 4-2 and 4-3.

4.2 Wind Loading

The surface wind loading on each region of a structure is
equal to the product of the surface pressure, the area of
surface exposed to the pressure, and one or more coefficients
that depend upon both air flow characteristics of the surface and
directional coefficients of forces acting on the surface. The
pressure is usually taken to be the stagnation pressure, which is
the pressure developed when the wind speed is reducecl to zero.
The flow characteristic coefficients, although theoretically
computable from complex fluid mechanics relationships (Ref. 4.3) ,
are more practically obtainable by wind tunnel model tests

8
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(Ref. 4.4).

There is widely available literature (Refs. 4.5, 4.6) that
considers practical aspects of the static wind loading,
predominantly upon on building, rather than antenna, structures.
The emphasis is usually on overall loading coefficients for the
entire configuration. For example the drag force on a structure
is computed as the product of a drag coefficient, the stagnation
pressure, and the frontal area of the entire surface exposed to
the wind. Lift forces, side forces, and moments are c:omputed for
the entire structure similarly from lift force, side force, and
moment coefficients. These coefficients are useful in
determining the loading at particular story levels or at the
foundations of Civil Engineering structures, for example. They
are also useful in obtaining the forces and moments at the axes
of antennas for the design of drive train motors, bearings, and
gears.

Nevertheless, the analysis of the microwave accuracy of the
antenna surface depends upon the spatial distribution of surface
wind pressure coefficients. Pressure coefficients vary
significantly over the surface. They usually are applied to
small individual areas (typically the size of each reflecting
surface panel). Products of tributary surface areas, wind
pressures, and pressure coefficients provide the means to compute
the forces at nodes of the finite element model. These forces
are the inputs for the processes of deformation analysis,
pathlength error computations, and least-squares best-fitting as
described in Chapters 2 and 3. In a sense, surface pressure
coefficients can be viewed as micro-scale phenomena, while the
overall drag, lift, side force, and moment coefficients can be
viewed as macro-scale phenomena. Of course, the macro-scale
coefficients could ideally be obtained through integrations that
employ the micro-scale components.

4.2.1 Stagnation Pressure Relationships

The Bernoulli model for the stagnation wind pressure q on an
exposed surface is

[4.19]

in which p is the air mass density and v is the wind speed. This
stagnation pressure is the differential pressure above the
ambient. It balances the kinetic energy lost by arresting the
motion of a unit volume of the air fluid.

In conventional English units and under standard atmospheric
conditions of 60”F and of 14.7 lbs/inch2 (psi) atmospheric
pressure, the air density is 0.002378 slug/ft3. Equation [4.19]
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applies with
conventional
Therefore

v(ft/s)

Then

v expressed in feet/s. In practice, it is
to express the speed in miles/hour (mph) as V.

= (5280/3600)V (mph) [4.20]

q =.00256  V2 [4.21]

and here q is in lbs/ft2 (psf).

The following factors can be used to convert to S1 units:

1 lb force (lbf) ~ = 4.448 newtons (n)

Then

1 foot (ft)
1 slug

the air density

PSI = 0.002378 X

= 0.3048 meters (m)
= 14.593 kilograms (kg)

%1 in kg/m3 is

14.593/(0.3048)3 = 1.2255 kg/m3

and Ea. f4.191 will aive the ~ressure in newtons/m2 with this-.
value of the &ir den;ity and fiith the speed in m-eters/second.

The air density can vary significantly with the site
altitude. For example, a specific computation in Ref. 4.7 shows
the density at elevation 3500 feet (1070 m) is only 8’7% of the
density at sea level. The procedure in this reference can be
extended to provide a generalized, rational algorithm to estimate
the variation of air density with altitude. To make the
estimate, we have the equation of state for a perfect gas which
implies a constant relationship between pressure, volume~ and
temperature. The relationship is

PV/T=R = constant [4.22]

P is the atmospheric pressure, V is the specific volume (volume
of a unit of mass) , and T is the absolute temperature (degrees
rankine in English units, degrees kelvin in S1 units). Letting
Po, VO, and TO represent the reference pressure~ volume~ and
temperature at the standard conditions, the volume at some other
condition can be found from

v = (PO/P) (T/To) VO

The weight density yis inversely
volume so that Eq. [4.23] can be

Y = (P/PO) (TO/T) YO

[4.23]

proportional to the specific
converted to

[ 4 . 2 4 ]
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where y. for air
0.0765 lbs/ft3.
be estimated as

T = TO-~Z

at standard conditions is 0.002378 * 32.17 =
A temperature-elevation gradient (Ref. 4.7) can

[ 4 . 2 5 ]

i.n which ~ is equal to 0.0035°F per foot of height (above sea
level) and Z is the height in feet. A rational estimate for the
atmospheric pressure at height Z is to assume that the change in
pressure depends approximately upon the weight of the column of
air from height 2=0 to height Z. This change in weight can be
computed as the product of the average of the density at sea
level and the density at the height Z and the height itself.
Then the pressure PO in lbs/in2 at height Z can be estimated as

P = P. -Z (1’+%)/2/144 [4.26]

Substituting Eqs. [4.25) and [4.26] h Eq. [4.24] provides
the ratio of the air density at height Z to the density at sea
level in the form

ylyo = N/D [4.27]

where N = 1 - yOZ/ (288PO)

and

D = l-~Z/TO + YOZ/ (288PO) [4.27b]

Figure 4-5 shows a plot of Eq. [4.27] for elevations up to
25,000 (7,620-m) feet above sea level. The points marked by
asterisks are from the Dept. of Commerce U.S. Standard Atmosphere
as reported in Ref. 4.8. The agreement of the curve with the
Standard Atmosphere is close enough to suggest that similar
methods of computation may have been used.

4 . 2 . 2 Surface Pressure Coefficients

Reference 4.9 is one of only a few substantive reports on
the wind tunnel determination of antenna surface pressure
coefficients. This report provides the data from pressure
transducers that were applied at 22 locations distributed ‘over
the surface of thin half-meter-diameter paraboloidal shells. The
focal length-to-diameter ratio of the shells was 0.33. Several
shells of different porosities were tested. Here, we will
consider only the shell with solid surface. The porclus shells

,, had specific porosity and hole size factors that restrict
generalization to other porosity configurations.
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Five sets of data from the reference are provided in Figure
4-6. These simulate antennas with solid surfaces at elevations
of O, 60, 90, 120, and 180 degrees. The first three cases
represent wind into the front of the antenna. The second two are
equivalent to the elevations of 60 and zero degrees with the wind
from the back. No side winds are considered, although symmetry
at the 90-degree elevation would allow this case to apply to
every wind azimuth. The radii are normalized to a unit diameter.
The column heading angles are measured from the top (Y axis) of
the antenna. These angles cover only the half of the antenna to
one side of the Y-Z plane. Symmetry can be used to derive the
other half because the wind is always either directly from the
front or the back.

Contour maps determined from the data are shown in Figure
4-7. The appearance of symmetry about the vertical axis is
really an artifice of the procedure invoked to produce the
contours. That is, contours for the full antenna were developed
by reflecting one side of the antenna about the Y-Z plane. A
40-by-40 X-Y grid was established as a basis for bilinear ‘
interpolation from the original wind tunnel measurement data.
When evaluating the appearance of these contours (or in fact, any
other data derived from the wind tunnel data) , it should be
recognized that there were only 22 measurements points in each
wind tunnel configuration. Furthermore, fine details of contour
maps depend upon the interpolation algorithms employed.

4.2.3 Wind Force Data For Computer Analysis

The data in Figure 4-6 has been used as the basis of
interpolation to provide wind force loading data for the finite
element analysis of antenna structure models. Appendix 4A
contains a MATLAB program, WINDTUNL.M, that will provide a file
of force-loading FORCE card image records (Table 3-1) that can be
input to the NASTRAN program (Ref. 3.7). The user is required to
supply basic antenna parameters of diameter and focal length.
The particular antenna surface is described in an 8-ccjlumn  input
matrix. The rows contains the node labels, a coordinate system
flag, the X, Y~ and Z coordinates of the node, and a weighting
factor that represents the relative surface area tributary to the
node.

The coordinate system flag provides the option of
representing the antenna in a cylindrical coordinate system as an
alternative to providing the X and Y coordinates in the standard
antenna coordinate system (defined previously in Chapters 1 and
2). A pre-defined cylindrical system is employed in which angles
are measured clockwise from the Cartesian Y axis, the X
coordinate in the input matrix is replaced by the radius, and the
Y coordinate is replaced by the angle (in degrees). The input Z
coordinates are not used, but instead are recomputed by the
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program from the parabolic equation so that the Z coordinate at
the vertex is zero.

The program prompts the user for input and contains default
values as well as comments for clarification. The output, in
addition to a file of FORCE cards, includes the sum of the forces
in the X, Y, and Z coordinate directions and the moment about the
X axis at the vertex.

The algorithms consist of interpolating the pressure
coefficients to the nodes of the structure, computing the wind
pressure from the speed (Eq. [4.19]) to obtain the force per unit
area, and then determining the area tributary to the nodes by
means of the weighting factor and the diameter. The surface
force magnitude at the node is then the product of the tributary
area, the pressure coefficient, and the stagnation pressure. The
direction cosines at the surface are developed (Eqs. [2.19]) to
provide the orientation of the force vector. The total surface
and projected areas are byproducts available from these
computations.

4.2.4 Wind Speed Profile

A well-known characteristic of wind is the variation of the
speed with the height above the ground. This variation is called
the velocity profile. Speeds are lowest near the ground and
increase with height within the boundary layer. The boundary
layer is several hundreds of meters above the surface, so that
ground-based antennas will normally be within the boundary layer.
The speed becomes constant above this height.

The speed-height relationship conventionally adopted in
civil engineering practice provides a power law function to
express the speed VA at height ZA in terms of the speed VO at a
reference height ZO as follows:

VJVO = ( z / J Z * )a [4.28)

The power law exponent a is usually taken as 1/7 for open
terrain, 1/10 over water, 1/4.5 in suburban areas, and 1/3 in
cities. The value of 1/7 is likely to predominate for ground
antenna sites. The boundary layer height in which Eq. [4.28] can
be used is 275 m for a = 1/7 and 210m for a = 1/10. The
boundary layer is higher for the other two categories. The
reference height is often taken as 10 m or 33 feet.

The logarithmic law (Refs. 4.3, 4.5, 4.6) provides another
expression for the wind speed profile. It invokes three
parameters to describe the speed variation and is developed from
micro-meteorological theory. Nevertheless, both the power law
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and logarithmic law provide similar--actually almost
indistinguishable--profiles at the usual antenna heights. Since
neither law provides an exact representation for every physical
situation, the power law is preferred becausel in the absence of
site data, the single parameter a can be estimated according to
the rules of the preceding paragraph.

Reference 4.7 tabulates several months of wind speed data
for three different heights recorded at hourly intervals at
Goldstone, California in 1966-67. An instrumented tower had
anemometers at the 50-, 150-, and 300-foot levels. Triplets of
data for the three levels were averaged for 5-minute periods
taken on the hour. The data triplets were closely indicative of
the speeds at simultaneous times for the three heights. Ten
months of data were available to provide comparisons for the
three heights and the data was pooled into monthly averages; thus
10 months of average speed data and three heights provide thirty
monthly averages. There were a total of about 4000 hourly
samples for each height. The value of a found by regression was
0.1405 and the standard deviation was 0.0193. Figure 4-8 shows a
plot of the ratios of the individual monthly average speeds at
the 150- and 300-foot heights to the speeds at the 50-foot
height. The speed ratios are plotted on a semi-log scale. The
power law line is plotted using the regression value of a. The
evident scatter of the data with respect to the regression line
makes the choice of power law or logarithmic law seem to be
immaterial.

4.2.5 Extension of Wind Tunnel Data to Other Wind Attitudes

If the wind tunnel tests that produced the data of Figures
4-6 and 4-7 were free of tunnel wall and boundary effects, the
data would have been homogeneous and could have been extrapolated
to provide data for variations in wind azimuth (yaw) in addition
to antenna elevation. In that case the wind tunnel data would
apply to the compound azimuth-elevation wind angle with respect
to the antenna axis. To be specific, if we now let a represent
the antenna elevation angle, and A represent the wind azimuth
relative to the antenna, the antenna Z axis can be represented by
the vector 28 as

26 = [0 -Cos a sin a]’ [4.29a]

The wind vector W impinging on the antenna can be represented by

w = [-sin A cos A o] [4.29b]

The cosine of the compound angle @ between the wind and the
antenna is the inner product of 2. and W:
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(#)  = COS-l (COS a cos A) [4.30]

Figure 4-9 shows contour lines of the magnitude of the
compound angles that occur for various combinations of antenna
elevation and wind azimuth. Depending upon the validity of two
assumptions, contours such as these would make it possible to
determine wind pressures for the full spectrum of elevation and
wind azimuth angles. The assumptions are:

(1) The wall and boundary effects of the wind tunnel did
not interfere significantly with homogeneous air flow.

(2) It is reasonable to interpolate the wind tunnel
pressure data for elevations intermediate to those at
which the wind tunnel measurements were taken.

Neither of these assumptions can be strictly justified. The
first assumption can be seen to be inaccurate in view of Figure
4-7a. Here, it is evident that the pressure lines are not
symmetrical about a horizontal diameter. In fact, it has been
suggested that the particular wind tunnel setup may have employed
unsymmetrical screens to produce a velocity profile as in Eq.
[4.28] with a = 0.14. The second assumption has yet to be
tested. We once attempted the drastic interpolation between the
O-degree and 90-degree elevation data to see if there was
agreement with the measured 60-degree data. The results of the
interpolation were not encouraging. Nevertheless, if it is
essential to have wind pressure distribution data in addition to
the five cases of Figure 4-7, the analyst may have no other
choice than to interpolate for the needed data and to accept the
consequences of the weaknesses of the above two assumptions.

4.2.6 Integration of Pressure Coefficients

The wind forces determined by summing the finite element
nodal loading generated (as described, for example, in Section
4.2.3) can be compared with wind tunnel force-balance data from a
number of independent wind tunnel antenna model tests. The
force-balance data usually provides the six generalized forces
(the three forces and the three moments with respect to the three
orthogonal axes) for the complete structure model that is being
tested. Force-balance data is more easily obtained than the
pressure distribution data and hence there is much more data
available, and it is usually much more detailed with respect to
the antenna elevation-wind azimuth spectrum. The data is used to
design the mechanical system of pinions, gears, and drive motors,
and to establish the loadings on the antenna pedestals, mounts,
and foundations. Depending on the coordinate system in which the
data is collected, the data can be used to derive the
conventional lift, drag, and side force coefficients and the
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pitch, roll, and yaw moments.

.

.

.

Reference 4.10 provides tables of force-balance data
assembled as the compilation of a number of wind tunnel testing
programs. There are four sets of data that cover several surface
porosity and focal length-to-diameter ratios. The antenna
elevation and wind azimuths are tabulated from O to 180 degrees
at 5-degree increments. A condensed set of data for the solid
surface with a focal length-to-diameter ratio of 0.313 is
reproduced in Appendix 4B. The coordinate system for this set of
data is shown in Figure 4-10. The antenna forces are computed as
the product of the tabulated force coefficients, the aperture
area, and dynamic pressure. The moments are computed as the
product of the moment coefficients with the aperture area and
diameter and dynamic pressure. That is:

force = cfA q
moment = c. A D q

where c~ and c. are the tabulated force or the moment
coefficients, A is the reflector area, D is the diameter, and q
is the stagnation pressure.

Reference 4.11 provides an additional compilation of wind
tunnel force-balance data from a number of sources. This
reference shows agreement in some cases and scatter in others
when data from differing sources are plotted for comparison.

Figure 4-11 shows a plan view of the right-half top surface
nodes of a hypothetical 30-foot-diameter antenna. The normal,
axial, and pitching moments were computed from the coefficients
in Appendix 4B and the computations outlined in Table 4-2. Wind
force loading data was also generated for this antenna by the
procedure and program described in Section 4.2.3, and the normal,
axial, and pitching moments obtained by summing the data of the
FORCE loading records are also recorded in the table for
comparison. Table 4-3 shows the same type of information for a
132-foot-diameter (40-m) antenna.

Tables 4-2 and 4-3 show that agreement of the forces from
the two computational approaches is best when the force
magnitudes are the largest. When the magnitudes are small, the
forces do not even always agree in sign. The pitch moment
agreement is also irregular, and there is also disagreement in
some of these signs. When proceeding below the vertex of the
antenna downwards towards the foundation, the disagreement in
moments is likely to become smaller because the effect of the
vertex forces will predominate at these distances. Disagreements
of the integration method with the force-balance method is not
surprising in view of the independent wind tunnel tests, possible
differences in wall and boundary layer effect differences, speed-
height profiles, differences in the focal length-to-diameter

16



ratios of the models,
the surface from only

4.3 Thermal Loading

The distribution
of the antenna causes

and the limitations of interpolating over
22 pressure tap locations.

of temperature over the structural members
thermal distortions of the members and

changes the shape of the surface. If the temperatures at the
nodes of the model or the average temperatures of members of the
model are known, finite element computer models can predict the
deformations, and hence the surface errors. Unfortunately, there
are almost no successful measurement data available to establish
the actual temperature distributions for an antenna structure.
In the absence of substantive data, it has been the practice to
perform a few rudimentary estimates of temperatures and
extrapolate these into arbitrary distributions for computer
analysis. As an alternative, an accurate and practical
analytical procedure that would incorporate thermal conductivity,
convection, radiation, and re-radiation appears to be out of the
reach of current technology because of overwhelming complexity,
uncertainty in physical parameters, and requirements for computer
resources.

A few infrared camera measurements (Ref. 4.12) made in the
1980s provide an exception to the lack of actual field data. A
34-m antenna was monitored in the field by an imaging infrared
camera during a tracking mission. A spacecraft was tracked in
a sidereal orbit so that a sun angle of about 25 degrees with the
antenna axis was approximately constant during the experiment.
Colors recorded by the camera were processed to provide a close
estimate of the actual temperatures of the structure. Figure 4-
12 is a black and white reproduction of the color photograph
camera record. Celsius temperatures obtained through processing
the camera record are printed in white ink. The darker regions
near the rim of the dish are attributed to the cold temperature
of the sky that appeared because the outer surface panels were
perforated. The relatively small range of temperatures that were
recorded are attributed to high-reflectance white paint that
controls temperatures of antenna metals exposed to direct
sunlight. Unfortunately, the resources were not available to
continue this measurement program.

Infrared camera measurements could be automated to provide
spectra of distributions of actual antenna temperatures for
various environmental conditions. These distributions could be
used for finite element analysis of surface accuracy. Field
camera measurements are more authentic than wind tunnel.
experiments because measurements are obtained for the full-sized
prototype under
under simulated
temperatures at

service conditions, rather than for scale models
conditions. It is also feasible to measure
many more points than are practical for wind

17
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4-1 Gravity Loading on Antenna: a) Loading Components; b)
Pathlength Error vs Elevation

4-2 Density Function, 34.4”N Latitude
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4-6 Antenna Surface Pressure Coefficients

4-7 Antenna Wind Pressure Contours: a) O-deg elevation; b) 60-
deg elevation; c) 90-deg elevation; d) 120-deg elevation; e)
180-deg elevation

4-8 Wind Speed vs height

4-9 Elevation and Azimuth to Produce Compound Angles

4-10 Wind Tunnel Force-Balance Coordinates

4-11 Top Surface Pads, 30-ft-diameter (Half) Aperture

4-12 Infrared Camera Measurements
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ELEVATION = O

1 5

FIGURE 4-6
u
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ANTENNA SURFACE PRESSURE COEFFICIENTS
;

RADIUS
.50
.45
.40
.35
● 30
.25
.20
● 15
. 10
● 05

1 . 0 0
1 . 3 9
1.48
1 . 5 1
1 . 5 3
1.53
1 . 5 4
1 . 5 5
1 . 5 6
1 . 5 8

DEGREES FROM
45 75

1 . 0 5
1 . 4 2
1 . 4 9
1 . 5 1
1 . 5 3
1.53
1 . 5 5

, 1 . 5 7
1 . 5 8
1 . 5 9

1 . 0 5
1 . 4 2
1 . 5 2
1 . 5 5
1 . 5 6
1 . 5 7
1 . 5 8
1 . 5 8
1 . 5 9
1 . 6 0

ELEVATION = 60
DEGREES FROM

15 45 75
RADIUS
.50 0.68 0.80 2.60
.45 1.00 1.09 2.30
.40 1.19 1.27 1.95
.35 1.29 1.36 1.75
.30 1.38 1.43 1.66
.25 1.47 1.47 1.63
.20 1.53 1.50 1.62
.15 1.56 1.52 1.58
10 1.57 1.53 1.58

:05 1.56 1.53 1.55

ELEVATION = 90

1 5
RADIUS
.50
.45
.40
.35
.30
.25
.20
15

:10
.05

0.30
0.57
0.50
0.47
0.26
0.17
0.12
0.09
0.07
0.04

TOP
105

1 . 0 5
1 0 4 5
1 . 5 1
1 . 5 9
1 . 6 0
1.60
1 . 6 1
1 . 6 1
1.61
1 . 6 1

TOP
105

4 . 3 0
3 . 3 0
2 . 3 6
1 . 8 0
1 . 6 0
1 . 5 3
1 . 5 1
1 . 5 1
1 . 5 0
1 . 5 2

(STOW)
DEGREES FROM TOP

45 75 105

-0.03 0.01 -0.23
0.29 0.02 -0.10
0.30 0.04 -0.08
0.20 0.05 -0.06
0.09 0.07 -0.06
0.05 0.08 -0.05
0.03 0.06 -0.03
0.02 0.05 -0.02
0002 0.04 -0.01
0.02 0.03 0.00

135

1.05
1.50
1.62
1.64
1.64
1.64
1.64
1.63
1.62
1.61

135

3.15
1.80
1.43
1.39
1.37
1.39
1.41
1.45
1.47
1.50

135

-0.63
-0.53
-0.45
-0.37
-0.30
-0.22
-0.15
-0.09
-0.04
-0.01

165

1.30
1059
1.65
1.66
1.66
1.65
1.64
1.63
1.62
1.61

165

2.50
1.42
1.19
1.17
1.14
1.11
1.09
1.12
1.24
1.41

165

-1.20
-0.90
-0.75
-0.64
-0.54
-0.53
-0.32
-0.20
-0.12
-0.05

ELEVATION = 120
DEGREES FROM TOP

1



b .,*

RADIUS
.50
.45
.40
.35
.30
.25
.20
.15
.10
.05

1 5 4 5 7 5 1 0 5

- 1 . 2 4 - 0 . 7 2 - 0 . 2 2 - 0 . 0 5
-1.28 - 0 . 8 6 - 0 . 2 7 0 . 0 2
- 1 . 2 5 - 0 . 8 9 - 0 . 3 1 0 . 0 7
- 1 . 1 8 - 0 . 8 4 - 0 . 3 0 0 . 1 0
- 1 . 1 0 - 0 . 7 6 - 0 . 2 8 0 . 1 2
- 1 . 0 3 - 0 . 6 6 - 0 . 2 3 0 . 1 2
- 0 . 9 3 - 0 . 5 4 - 0 . 1 8 0 . 1 1
- 0 . 7 8 - 0 . 4 0 - 0 . 1 3 0 . 0 9
- 0 . 5 5 - 0 . 2 4 - 0 . 0 8 0 . 0 7
- 0 . 2 2 - 0 . 1 0 - 0 . 0 3 0 . 0 4

ELEVATION = 180

RADIUS
.50
.45
.40
. 35
30

:25
.20
15

:10
.05

1 5

-0.45
-0.68
-0.85
-1.00
- 1 . 1 3
- 1 . 2 4
- 1 . 3 4
- 1 . 3 9
- 1 . 4 1
- 1 . 4 2

DEGREES
45

- 0 . 3 7
- 0 . 6 5
- 0 . 8 5
- 1 . 0 2
- 1 . 1 6
- 1 . 2 4
- 1 . 3 2
- 1 . 3 6
- 1 . 3 9
- 1 . 4 1

FROM TOP
75 105

- 0 . 4 7
- 0 . 7 0
- 0 . 9 0
- 1 . 0 4
- 1 . 1 6
- 1 . 2 4
- 1 . 3 2
- 1 . 3 6
- 1 . 3 9
- 1 . 4 1

- 0 . 4 9
- 0 . 7 3
- 0 . 9 0
- 1 . 0 6
- 1 . 1 8
- 1 . 2 7
- 1 . 3 5
- 1 . 3 9
- 1 . 4 1
- 1 . 4 2

135

-0.10
0.07
0.16
0.21
0.24
0.25
0.24
0.21
0.16
0.10

135

-0.51
-0.87
-1*O3
-1.11
-1.18
-1.24
-1.30
-1.34
-1.38
-1.41

165

-0.0[)
0.05
0.10
0.13
0. 1“?
0.20
0.24
0.25
0.22
0.14

165

-0.88
-1.00
-1.14
-1.25
-1.31
-1.33
-1.36
-1.37
-1.40
-1.42
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TABLES

4-1 Elevation Weighting Factors for Solar Missions, Antenna
Latitude = 35.4 degrees

4-2 Total Wind Loading Comparisons, 30-ft-diameter Half Antenna

4-3 Total Wind Loading Comparisons; 132-ft-diameter Half Antenna
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0.0
10.0
2 0 . 0
3 0 . 0
4 0 . 0
5 0 . 0
6 0 . 0
7 0 . 0
8 0 . 0
9 0 . 0

TABLE 4-1
ELEVATION WEIGHTING FACTORS FOR SOLAR MISSIONS

ANTENNA LATITUDE = 35.4 DEGREES

Iilev. -

.00000

.04065

.04338

.05983

.03850

.02966

.02327

.01738

.00000

.00000

2 . 5
1 2 . 5
2 2 , 5
3 2 . 5
4 2 . 5
5 2 . 5
6 2 . 5
7 2 , 5
8 2 . 5
9 2 . 5

.00000

.04106

.04478

.06156

.03660

.02855

.02235

.01653

.00000

.00000

5.0 .00402
15.0 .04162
25.0 .04686
35.0 .04657
45.0 .03353
55.0 .02633
65.0 .02033
75.0 ,01431
85,0 .00000
95.0 .00000

7 . 5
1 7 . 5
2 7 . 5
3 7 . 5
4 7 . 5
5 7 . 5
6 7 . 5
7 7 . 5
8 7 . 5
9 7 . 5

.04034

.04237

.05038

.04289

.03217

.02534

.01944

.00942

.00000

.00000



TABLE 4-2
TOTAL WIND LOADING COMPARISONS
30 FOOT DIAMETER HALF ANTENNA

A=353 D=30

Elevation o 60 90 120 180

Speed 60 60 100 60 60

q 9.208 9.208 25.58 9.208 9.208

cNornlal -0.032 -0.078 0.153 0.216 -0.030

cAxial 1.521 1.832 0.0 -0.600 -0.961

Cpitch, 0.038 -0.049 0.104 0.124 0.022

C~O,n):l  A q -104 -254 1383 703 -98

Sum of -50 -217 905 -397 72
Normal
FORCES

C~Xi~l A q 4950 5962 0 -1953 -3127

Sum of 4842 5377 -913 -921 -3351
Axial
Forces

c ~i~Cll A D q 3170 -4783 28,206 12, 2148
106

Sum of -1435 -6532 26,022 -11,230 2107
Pitch
Moments



=

TABLE 4-3
TOTAL WIND LOADING COMPARISONS
132 FOOT DIAMETER HALF ANTENNA

A=6842 D=132

❑

Elevation o 60 fo ~ 1 2 0 1 8 0

Speed 60 60 100 60 60

q 9.208 9.208 25.58 9.208 9.208

cN o r m a l -0.032 -0.078 0.153 0.216 -0.030

C),~i~~ 1.521 1.832 0.0 -0.600 -0.961

C~i,~~, 0.038 -0.049 0.104 0.124 0.022

cN~,~,] A q -1996 -4865 26,509 13,742

E:

-1871

Sum of -1060 -3699 18,528 -8428 1459
Normal
FORCES

C~Xi~l A q 94,870 114,271 0 -37,425

E

-59,942

Sum of 94,349 103,063 -17,212 -18, 129 -65,091
Axial
Forces

C~i,C~, A D q 312,873 -403,441 2,400,117 1,020,954

E

181,137

Sum of -125,781 -461,083 2,216,417 -994,252 175,950
Pitch
Moments



APPENDIX 4A

MATLAB WIND LOADING PROGRAMS

This appendix contains the MATLAB programs WINDTUNL.M,  which
provides a file of NASTRAN program-type wind loading data records
and the file FIGURES.M, which is invoked by WINDTUNL and supplies
surface pressure loading coefficients as the basis for
interpolation over a user-defined surface. These are the same
coefficients as in Figure 4-6, but arranged as a MATLAB file.
Additional background is provided in Section 4.2.3.

The surface is defined by the user-supplied matrix, ‘Igridw.!!
The first column of gridw contains the node label, the second
column contains an integer flag to define the coordinate system,
the third, fourth, and fifth columns contain the X, Y, and Z
cartesian coordinates of the node, and the sixth column contains
the weighting factor for the node. The flag in the second column
is 11011 (not blank) when the X, Y, and Z coordinates are supplied
in the next three columns. When the flag is ttltt a cylindrical
coordinate system is implied with the radius in the third column,
the angle (positive clockwise from the Y axis) is in the fourth
column. Z coordinates in the fifth column can be arbitrary
because the program recomputes these from the equation of the
parabola.

In addition to gridw, the user is also prompted to supply
the focal length, antenna diameter, and another flag to establish
;;;~her the model is for a full antenna or a symmetric (right)

. The user also supplies a vector of wind speeds for each
antenna attitude, and the name of a file in which the output
force data is to be stored. The user also has the option of
either traditional Enulish units or S1 units and the dimensions
and other details
documented within

EDi This Appendix
FIGURES.M

for-input and output data in these units are
the program.

requires the files WINDTUNL.M and



M. .
This is the first part of Appendix ~to Chapter 4

% August 4,1993 this is WINDTUNL.M
% Set a few defaults
sym=.5,diam=360, f=152.5, system=’ENG’  ,speed=60 % default for
debug
disp(tsupply diameter,diam=, Sym=(l is full or.5 is half),
focus,f= 1)
disp( ‘ Ilgridw= II, e.g. gridw=[label flag(O vs 1) X Y Z
weight] ‘)
disp(’, system=(blankSI or ENG- in quotes) and “return” ‘)
ew=exist( ‘nowait!)

keyboard
label=gridw( :,l);rad=gridw(  :,s);angle=gridw(  :,a); wgt=g~idw(:  ,6);
sumw=sum(wgt )
qf=find(gridw( :,2)==o) ;
% convert O flags to cylindrical coords
if(length(qf>l)  )
x(qf)=gridw(qf,3) :, y(qf)=gridw(qf,4)  ; rad(qf)=sqrt(x.  ”2+y. ‘2) ;
angle(qf)=180/pl*atan (X(qf) ./Y(qf)) ;
%[x y rad angle] % debug
end
qa=find(angle<O) ;,if(qa>O) ,atemp=angle; ,atemp(qa) =atemp(qa) +360;,
end
x=rad. *sine(angle) ;y=rad. *cosine(angle)  ;z=rad.A2/4/f;

t=sqrt(rad. ‘2+4*f”2*ones(size(rad)  ));
gx=x./t;gy=y./t;gz=2*t. “(-l)*f;
aproj=pi/4*diam*diam*sym;

if(system== ~ENG~)
anetft=aproj/144
afact=anetft/sumw % tributary area per unit of “wgtll

adens=.002378 % slugs/cu-ft =# sec*sec/ft /ft/ft/ft
qfact=O.5*adens*(5280/3600)  “2 % =q/(vel*vel)

end

if (system==’ S1’)
afact=aproj/sumw;

%some conversions: llb=4.448n,l
ft.= .3048m,4.448/.3048=14 .5932kg/slug

adens=l.2255 % kg/cu. meter =. 002378/14.5932/(.3048’3)
qfact=.5*adens

end

gridaw=afact*wgt; % vector of areas associated with each grid
aslope=gridaw./gz;
asurf=sum(aslope)

figures
figset=5:9;
speeds=[60 60 100 60 60];



ffile=
disp( ‘
1! ‘)
disp( ‘
disp( 1
disp( ‘

‘ forcimag .dat’
Provide name of file for saving l’FORCEll records,’’ffile=

provide figset=[ vector of FIGURES to use (default=5:9) ]’)
provide speeds=[vector of speeds, to match figset, ] !)
speeds(default) = [60 60 100 60 60] (mph) , then “return’”)

keyboard
for j =l:length(figset)
fid=figset(j)
speed=speeds (j)
clear fig
ss=sprintf( lFIGURE%gl  ,fid)
fig=eval(ss) ;
qq=sprintf( lPZERO%gl,fid)
PZERO=eval(qq)
flip=fliplr(fig) ;
fig=[fig(:,l) fig flip fig(:,l)];
az=15:30:359; az=[O az 360];
radii=( .5:-.O5:O)l;
fig(ll, :)=PZERO*ones (l,14) ;
rr=rad/diam;
tic,pres=interp2  (az, radii, fig,atemp,rr) ;toc
q=qfact*speed*speed
fmag=-q*pres. *aslope;
disp( ‘ Node Radius Angle Coeff. Force
Slope-A’)
sumry=[label rad rr angle pres fmag aslope]
fx=fmag. *gx;fy=fmag. *gy; fz=fmag.*gz;
sumx=sum(fx) ; sumy=sum(fy) ; sumz=sum(fz) ;
xmoment=sum(fy. *z-fz .*y) ;
fprintf(’ Results For Force ID %g.\n’,fid)
disp(l The sums of the forces arel)
sumf=[sumx sumy sumz], fprintf(’ Pitch moment(about X axis)
%g.\n’ ,xmoment)
lf=length(fmag) ;
FORCE=[fid*ones (lf,l) label fmag gx gy gz pres aslope];
filid=fopen(ffile, ‘a+’)
fprintf,(filid, IFORCE
%8.0f%8. 0f%8.1f%8.4f%8 .4f%8.4f\r\nt, FORCE( :,1:6)’);
disp(lto continue IIreturnl’1)
ew=exist( ‘nowait’)
if(ew==O) ,keyboard,end %if ltnowait~t not given a value,wait
end
fclose(f.ilid)
disp( ‘ Card images saved on ASCII filet),ffile



.4-
This is part of Appendix A to Chapter 4

% July 29 this is FIGURES.M, made from UNIVAC RIL. (c)r RIL-ABS.)
% ANTENA MODEL WIND PRESSURE COEFFICIENT DATA FROM
% WIND TUNNEL STUDIES.
%

FROM IJPL CP-4’.
REVISED 27 OCT ’81 TO PROPERLY ORIENT BACK-WINDED

STRUCTURES
%C

FIGURE5=[ . . . % O DEG PITCH ANGLE
%THETA=>

% 15 45 75

1.00, 1.05, 1.05,
1.39, 1.42, 1.42,
1.48, 1.49, 1.52,
1.51, 1.51, 1.55,
1.53, 1.53, 1.56,
1.53, 1.53, 1.57,
1.54, 1.55, 1.58,
1.55, 1.57, 1.58,
1.56, 1.58, 1.59,
1.58, 1.59, 1.60,

PZER05=1.60,  %

%E 6 60 DEG PITCH ANGLE
% 15 45 75

FIGURE6=[ . . .
. 68, .8, 2.6,
1.0, 1.09, 2.3,
1.19, 1.27, 1.95,
1.29, 1.36, 1.75,
1.38, 1.43, 1.66,
1.47, 1.47, 1.63,
1.53, 1.5, 1.62,
1.56, 1.52, 1.58,
1.57, 1.53, 1.58,

1.56, 1.53, 1.55,
PZER06=1.52 %

FIGURE7=[. . . %
%15 45

● 30,
. 57,
. 50,
.47,
. 26,
. 17,
. 12,
. 09,
. 07,

. 04,

-.03,
.29,
● 30,
. 20,
09,

:05,
. 03,
. 02,
02,

. 0;,

1 0 5

1 . 0 5 ,
1 . 4 5 ,
1 . 5 1 ,
1 . 5 9 ,
1 . 6 0 ,
1 . 6 0 ,
1 . 6 1 ,
1 . 6 1 ,
1 . 6 1 ,
1 . 6 1 ,

1 0 5

4 . 3 ,
3 . 3 ,
2 . 3 6 ,
1 . 8 ,
1 . 6 ,
1 . 5 3 ,
1 . 5 1 ,
1 . 5 1 ,
1 . 5 0 ,

1 . 5 2 ,

135

1.05,
1.50,
1.62,
1.64,
1.64,
1.64,
1.64,
1.63,
1.62,
1.61,

$END

135

3.15,
1.8,
1.43,
1.39,
1.37,
1.39,
1.41,
1.45,
1.47,

1.50,
$END

90 DEG PITCH ANGLE (STOW)
75 105 135

. 01,

. 02,

.04,

. 05,

. 07,

. 08,
● 06,
. 05,
04,

.0;,

-.23, -.63,
-.10, -.53,
-.08, -.45,
-.06, -.37,
-.06, -.30,
-.05, -.22,
-.03, -.15,
-.02, -.09,
-.01, -.04,

0.00, -.01,

165

1.30,
1.59,
1.65,
1.66,
1.66,
1.65,
1.64,
1.63,
1.62
1.61,]

165

2.5,
1.42,
1.19,
1.17
1.14,
1.11,
1.09,
1.12,
1.24,

1.41,];

165

-1.20,
-.90,
-.75,
-.64,
-.54,
-.53,
-.32,
-.20,
-.12,

-.05,];



PZER07=.01 % $END

FIGURE8 =[... %
%15 45

-1.24, -.72,
-1.28, -.86,
-1.25, -.89,
-1.18, -.84,
-1.10, -.76,
-1.03, -.66,
-.93, -.54,
-.78, -.40,
-.55, -.24,

-.22, -.10,
PZER08=.00 %

FIGURE9=[ . . . %
%15 45

-.45, -.37,
-.68, -.65,
-.85, -.85,

-1.00, -1.02,
-1.13, -1.16,
-1.24, -1.24,
-1.34, -1.32,
-1.39, -1.36,
-1.41, -1.39,

-1.42, -1.41,
PZER09=-1.42 %

120 DEG PITCH ANGLE
75 105 135

-.22,
-.27,
-.31,
-.30,
-.28,
-.23,
-.18,
-.13,
-.08,

-.03,

-.05,
.02,
.07,
. 10,
12,

:12,
. 11,
● 09,
07,

.64,

- . 1 0 ,
● 07,
. 16,
.21,
24,

:25,
. 24,
.21,
16,

.io,
$END

180 DEG PITCH ANGLE
75 105 135

-.47, -.49, -.51,
-.70, -.73, -.87,
-.90, -.90, -1.03,

-1.04, -1.06, -1.11,
-1.16, -1.18, -1.18,
-1.24, -1.27, -1.24,
-1.32, -1.35, -1.30,
-1.36, -1.39, -1.34,
-1.39, -1.41, -1.38,

-1.41, -1.42, -1.41,
$END

165

-.08,
. 05,
. 10,
. 13,
17,

:20,
.24,
.25,
.22,

.14,];

165

-.88,
-1.00,
-1.14,
-1.25,
-1.31,
-1.33,
-1.36,
-1.37,
-1.40,

-1.42,];



APPENDIX 4B

This is a condensed excerpt of tabulated data that appeared in
~lco~pilation Of Wind Tunnel Coefficients for Parabolic
Reflectors’,JPL  Publication 78-16. The uncondensed data was
tabulted for increments of 5 degrees in both elevation and
azimuth. There are three other tables in this reference for other
focal length-to-diameter ratios and surface porosities.

The use of these data is discussed in Section 4.2.6 of the
text and was employed in the computations of Tables 4--2 and 4-3.

ED: This appendix requires tablea4b

20



This is “app4=b” (Appendix  B to Ch 4)

TABLE -
WIND TUNNEL FORCE BALANCE COEFFICIENTS
Focal Length To Diameter Ratio =0.313

Solid Surface
(EXCer@ From Table A-2,

AZIMUTH ANGLE

ELEVATION FORCE COEFFICIENTS
ANGLE NORMAL AXIAL SIDE

1:::
30 .0
45 .0
60 .0
75 .0
90 .0

105.0
120 .0
135.0
150 .0
165.0
180.0

- 0 . 0 3 2
- 0 . 0 3 9
- 0 . 0 5 8
- 0 . 1 1 0
- 0 . 0 7 8

0 .122
0 .153
0 ,161
0 . 2 1 6
0 .201
0 .151
0 .070

- 0 . 0 3 0

1 .521 - 0 . 0 0 2
1 .501 0 ,001
1 .461 0 ,001
1 .602
1 .832
0 .981

- 0 . 5 0 2
. -0 .600
- 0 . 5 3 2
- 0 . 7 9 3
- 0 . 8 8 0
- 0 . 9 6 1

- 0 , 0 0 3
- 0 . 0 1 1
- 0 . 0 1 0
- 0 , 0 0 7
- 0 . 0 0 4

0,004
0.004
0.003
0.002

Ref. [4-10])

. .0

MOMENT COEFFICIENTS
PITCH ROLL YAW

0.038 - 0 . 0 2 0 - 0 . 0 0 3
0 .032 0 .002 - 0 . 0 0 2
0 . 0 2 0 0 .001 - 0 . 0 0 1

- 0 . 0 4 2 0 .002 - 0 . 0 0 1
- 0 . 0 4 9 0 .002

0 .069 0 .001 0 .001
0 .104 0 .001
0 .110 0 .001
0 .124 0 .001
0 ,112 - 0 . 0 0 1 0 .001
0 .050 - 0 . 0 0 1 0 .002
0 .028 0 .002
0 .022 0 .001 0 .002

AZIMUTH ANGLE = 15.0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

1:::
30 .0
45 .0
60 .0
75 .0
90 .0

105.0
120.0
135 ,0
150.0
165 .0
180.0

-0.032 1.525
-0.034 1.485
-0.047 1.495
-0.066 1.574

1.474
0.108 0.983
0 $1 2 2 0.141
0 . 1 2 6 - 0 . 4 5 4
0 . 1 5 3 - 0 . 7 6 7
0 . 1 5 0 - 0 . 6 6 6
0 . 1 3 3 - 0 . 7 5 6
0 , 0 9 6 - 0 . 8 7 1

- 0 . 0 1 8 - 0 . 9 4 2

-0.022 0.068
-0.022 0.068
- 0 . 0 2 7 0 .047
- 0 , 0 3 4 - 0 . 0 4 2
- 0 . 0 1 7 0 .011

0 .013 0 .113
0 ,034 0 .122
0 .052 0 .120
0 .062 0 .111
0 .070 0 . 0 8 6
0 .075 0 .047
0 .079 0 .005
0 .081 - 0 . 0 3 8

-0.006
-0.003
0.001
0.005
0,007
0.008
0 .009
0 .009
0 .010
0.011
0 .010
0 .009
0.007

-0.021
-0.021
-0.025
- 0 . 0 2 0

0 .012
0 .037
0 .047
0 .054
0 . 0 5 6
0 .057
0 . 0 5 9
0 . 0 6 0
0 . 0 6 0

AZIMUTH ANGLE = 30.0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

0.0
1 5 . 0
3 0 . 0
4 5 . 0
6 0 . 0
7 5 . 0
9 0 . 0

1 0 5 . 0

-0.025
-0.032
-0.049
-0.052
-0.009
0.107
0.112 -
0.112 -

1.577
1.447
1.507
1.786
1.606
0.725
-0.103
-0.636

-0.044
-0.042
-0.043
-0.050 -
-0.029,
0.052
0.094
0.119

0.030
0.058
0.062
0.034
0.010
0.112
0.120
0.117

-0.013 -0.038
-0.004 -0.031

-0.035
-0.004 -0.070
0,002 -0.019
0.003 0.042
0.004 0.065
0,004 0.079



120.0 0 . 1 2 3 - 0 . 9 1 2 0 , 1 3 6 0 .113 0 .005 0 .089
1 3 5 . 0 0 .127 - 0 . 7 2 1 0 . 1 4 6 0 . 0 7 6 0 , 0 0 6 0 ,097
150.0 0 .118 - 0 . 5 8 4 0 .153 0 ,034 0 . 0 0 6 0 .101
165.0 0 . 0 8 5 - 0 . 6 0 0 0 .157 0 .008 0 .004 0 .102
1 8 0 . 0 - 0 . 0 1 6 - 0 . 7 3 0 0 .158 - 0 . 0 1 9 0 . 0 0 2 0 . 1 0 3



= 45.0

ELEVATION FORCE
ANGLE NORMAL

0 . 0 - 0 . 0 2 1
1 5 . 0 - 0 . 0 1 8
3 0 . 0 - 0 . 0 0 8
4 5 . 0 0 . 0 1 3
6 0 . 0 0 . 0 5 3
7 5 . 0 0 .105

AZIMUTH ANGLE

COEFFICIENTS
AXIAL SIDE

1.519 -0,058
1.609 -0.064
1,629 -0.070
1.588 -0.035
1.288 0.039
0.526 0.090

9 0 . 0 0 .105 - 0 . 1 0 5 0 .124
105.0 0 .108 - 0 . 4 9 8 0 .134
120.0 0 . 1 1 6 - 0 . 5 5 3 0 .140
135.0 0 . 1 1 5 - 0 . 2 0 0 0 .175
150.0 0 , 0 9 5 - 0 . 3 5 8 0 .191
165.0 0 .057 - 0 . 5 1 2 0.197 “
180 .0 - 0 . 0 0 6 - 0 . 6 0 0 0.200 -

ELEVATION FORCE
ANGLE NORMAL

0 . 0 0 . 0 8 5
1 5 . 0 0 .017
3 0 . 0 - 0 . 0 0 8
4 5 . 0 0 . 0 2 0
6 0 . 0 0 . 0 5 6
7 5 . 0 0 .078

AZIMUTH ANGLE

COEFFICIENTS
AXIAL SIDE

1.581 - 0 . 0 7 6
1 .671 - 0 . 0 6 5
1 .531 - 0 . 0 3 0
1 .162 0 .050
0 .802 0 .120
0.397 0.142

9 0 . 0 0 .084 0 ,057 0 ,150
105.0 0 . 0 8 4 - 0 . 2 6 9 0 .150
120.0 0.077 -0,490 0.155
135.0 0.067 -0.534 0.180

‘150.0 0.056 -0.121 0.201
165.0 0,032 -0.150 0.228

MOMENT COEFFICIENTS
PITCH ROLL YAW

0.035 0 .018 - 0 . 0 4 4
0 .055 0 . 0 0 6 - 0 . 0 5 5
0 .070 0 .001 - 0 . 0 8 2
0 .062 0 ,004 - 0 . 0 3 8
0 . 0 6 6 0 . 0 0 6 0 . 0 2 9
0 . 0 9 6 ’ 0 . 0 6 0
0 .097 - 0 . 0 0 1 0 . 0 8 0
0 .096 0.091.
0 ,083 0 .003 0 .099
0 .072 - 0 . 0 0 3 0 . 1 0 9
0 .035 0 , 0 0 5 0,121
0.014 0.005 0 .128
0 .008 0.001 0 . 1 3 0

= 60 .0

MOMENT COEFFICIENTS
PITCH ROLL YAW

0.130
0 .089
0 . 0 9 0
0 ,071
0 .061
0.071
0.065
0.054
0.040
0 .025
0 .012
0 .002

0 .018
0 .018
0 .022
0 .013
0 .003
0 .001
0 .002
0 .002
0 . 0 0 3
0 . 0 0 6

- 0 . 0 0 1
- 0 . 0 0 5

-0.07!j
-0.050
-0.010
0.03!j
0.070
0.090
0,100
O.10!j
0.102
0.120
0.132
0.140

180.0 - 0 . 0 1 9 - 0 . 1 6 3 0 ,235 - 0 . 0 0 2 - 0 . 0 0 5 0.145

AZIMUTH ANGLE = 75.0

ELEVATION FORCE COEFFICIENTS
ANGLE NORMAL AXIAL SIDE

0 . 0
1 5 . 0
3 0 . 0
4 5 . 0
6 0 . 0
7 5 . 0
9 0 . 0

1 0 5 . 0
1 2 0 . 0
1 3 5 . 0
150.0
165.0
180.0

0.002
0 .010
0 .017
0 .029
0 , 0 4 0
0 .042
0 . 0 4 3
0 .041
0 . 0 3 9
0 . 0 3 3
0 . 0 2 6
0 . 0 1 3

- 0 . 0 0 5

0 .875
0 ,845
0 . 7 7 5
0 ,584
0 .404
0 . 2 0 3
0 .122

- 0 . 2 5 7
- 0 . 4 3 6
- 0 . 4 0 0
- 0 . 4 8 2
- 0 . 5 1 3
- 0 . 5 2 1

0.136
0.133
0.131
0.144
0.156
00161
0,164
0.167
0.167
0.165
0.168
0.179
0.177

MOMENT COEFFICIENTS
PITCH

0.005
0.027
0.080
0.050
0.035
0.033
0.031
0.028
0.022
0.007

-0.024
-0,008
-0.001

ROLL YAW

0.013
0.012
0.011
0.005
0$001

-0.001
-0,003
-0.004
-0.004
-0.003
-0.002

0,001

0.064
0.075
0.086
0.094
0.098
0.1OO
0.102
0.102
0.104
0.105
0.106
0.106
0.105



AZIMUTH ANGLE =90.0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

0 . 0
1 5 . 0
3 0 . 0
45!0
6 0 . 0
7 5 . 0
9 0 . 0

105 .0
120 .0
135 .0
1 5 0 , 0
1 6 5 . 0
180 .0

0 . 0 0 5
0 .001

- 0 . 0 0 2
- 0 . 0 0 3
- 0 . 0 0 4
- 0 . 0 0 2

0 .002
0 .003
0 .002

- 0 . 0 0 3
- 0 , 0 0 6

- 0 . 0 4 7
- 0 . 0 1 9
- 0 , 0 0 3

0 , 0 1 6
0 . 0 2 6
0.021
0 .021
0 . 0 2 6
0 .021
0.021
0 . 0 1 9

- 0 . 0 1 0
- 0 . 0 4 0

0 .201 0 .015
0 .185 0 .007
0 .175 0 .005
0 .170 0 .002
0 .165 0 .001
0 ,160
0 .162
0 .165
0 .170 - 0 . 0 0 1
0 .178 - 0 . 0 0 3
0 , 1 8 6 - 0 . 0 0 6
0 .194 - 0 . 0 1 0
0 .201 - 0 . 0 1 5

0 .012
0 ,012
0 .012
0 .011
0 .008
0 . 0 0 6
0 .004
0 . 0 0 6
00008
0.010
0 .012
0 ,012
0 . 0 1 3

0 . 1 3 0
0 . 1 3 0
0 . 1 2 9
0 , 1 2 9
0 . 1 3 0
0 . 1 2 9
0 .128
0 . 1 2 9
0 . 1 3 0
0 . 1 3 0
0 . 1 2 9
0 . 1 2 9
0 .131

AZIMUTH ANGLE =105,0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

0 . 0
15.0
30.0
45.0
60.0
75.0
90.0

105.0
120.0
135.0
150.0
165.0
180.0

0.005 - 0 . 5 2 1
- 0 . 0 1 3 - 0 . 5 1 1
- 0 . 0 2 6 - 0 . 4 8 1
- 0 . 0 3 3 - 0 . 4 0 1
- 0 . 0 3 9 - 0 . 4 3 2
- 0 . 0 4 1 - 0 . 2 5 4
- 0 . 0 4 3 0 . 1 2 6
- 0 . 0 4 2 0 .203
- 0 . 0 4 0 0 ,400
- 0 . 0 2 9 0 .582
- 0 . 0 1 7 0 .770
- 0 . 0 1 0 0 .844
- 0 . 0 0 2 0 .872

0.177 0.001
0.179 0.008
0.168 0.024
0.165 -0.007
0.167 -0.022
0.167 -0.028
0.164 -0.031
0.161 -0.033
0.156 -0.035
0.144 -0.050
0.131 -0.080
0.133 -0.027
0,136 -0.005

0.001

-0.002
-0.003
-0.004
-0.004
-0.003
-0.001
0.001
0.005
0.011
0.012
0.013

0 . 1 0 5
0 . 1 0 6
0 .132
0 . 1 0 5
0 .104
0 .102
0 .102
0 . 1 0 0
0 ,098
0 .094
0 . 0 8 6
0 . 0 7 5
0 .064

AZIMUTH ANGLE =120.0
ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

1:::
30$0
4 5 , 0
6 0 . 0
7 5 . 0
9 0 . 0

105 .0
1 2 0 . 0
1 3 5 . 0
1 5 0 . 0
1 6 5 . 0
180 .0

0.019
-0.032
-0.056
-0.067
-0.077
-0.084
-0.084
-0.078
-0.056
-0.020
0.008

-0.017
-0.085

- 0 . 1 6 3
- 0 . 1 5 2
- 0 . 1 2 3
- 0 . 5 3 3
- 0 . 4 9 9
- 0 . 2 6 2

0 .053
0 .390
0 .800
1 .160
1 .533
1 ,670
1.581

0.235
0.228
0.201
0 .180
0 .155
0.150
0.150
0.142
0.120
0.050

-0.030
-0.065
-0.076

0.002
-0.002
-0.012
-0.025
-0.040
-0.054
-0.065
-0.071
-0.061
-0.071
-0.090
-0.089
-0.130

- 0 . 0 0 5
- 0 , 0 0 5
- 0 . 0 0 1

04006
0 , 0 0 3
0 .002
0 .002
0 .001
0 .003
0 .013
0 .022
0 .018
0 .018

0.145
0.140
0.132
0.120
0.102
0.105
0.100
0.090
0.070
0.035

-0.010
-0.050
-0.075



ELEVATION FORCE
ANGLE NORMAL

AZIMUTH ANGLE =135.0

COEFFICIENTS MOMENT COEFFICIENTS
AXIAL SIDE PITCH ROLL YAW

0 . 0
15.0
30.0
45.0
60.0
75.0
90.0

105.0
120.0
135.0
150.0
165.0
180.0

0 , 0 0 6
- 0 . 0 5 7
- 0 . 0 9 5
- 0 , 1 1 5
-00116
- 0 , 1 0 8
- 0 . 1 0 5
- 0 , 1 0 5
- 0 . 0 5 3
- 0 . 0 1 3

0 ,008
0 .018
0.021

- 0 . 6 0 5
- 0 . 5 1 3
-0 ,352
-0 .201
- 0 , 5 5 6
- 0 , 4 9 9
-0 .107
0 ,528
1 .282
1 ,580
1 .625
1 .600
1 .513

0.200 0.008 0.001 0.130
0.197 -0.014 0.005 0.128
0.191 -0.035 0.005 0.121
0.175 -0.072 -0,003 0.109
0,140 -0.083 0.003 0.099
0.134 -0.096 0.091
0.124 -0.097 -0.001 0.080
0,090 -0,096 0,060
0.039 -0.066 0,006 0.029

-0.035 -0.062 0.004 -0.038
-0.070 -0.070 0.001 -0.082
-0.064 -0,055 0.006 -0,055
-0.058 -0.035 0.018 -0.055

AZIMUTH ANGLE = 150,0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

0 , 0
15.0
30.0
45.0
60.0
75.0
90.0

105.0
120.0
135,0
150.0
165.0
180.0

0 . 0 1 6
- 0 . 0 8 5
- 0 . 1 1 8
- 0 . 1 2 7
- 0 . 1 2 3
- 0 , 1 1 2
- 0 . 1 1 2
- 0 . 1 0 7

0 . 0 0 9
0 .052
0 . 0 4 9
0 .032
0 . 0 2 5

- 0 . 7 3 7 0 ,158 0 .019
- 0 . 6 0 2 0 .157 - 0 . 0 0 8
- 0 . 5 8 1 0 ,153 - 0 , 0 3 4
- 0 . 7 2 2 0 . 1 4 6 - 0 . 0 7 6
- 0 . 9 1 1 0 . 1 3 6 - 0 . 1 1 3
- 0 . 6 3 6 0 .119 - 0 . 1 1 7
- 0 . 1 0 5 0 .094 - 0 . 1 2 0

0 .722 0 .052 - 0 . 1 1 2
1 .600 - 0 . 0 2 9 - 0 . 0 1 0
1 .786 - 0 . 0 5 0 0 .034
1 ,500 - 0 . 0 4 3 - 0 . 0 6 2
1 .445 - 0 . 0 4 2 - 0 . 0 5 8
1 .572 - 0 , 0 4 4 - 0 . 0 3 0

0 .002
0 .004
0 . 0 0 6
0 . 0 0 6
0 .005
0 .004
0 .004
0 ,003
0 .002

- 0 . 0 0 4

- 0 . 0 0 4
- 0 . 0 1 3

0 .103
0 .102
0 .101
0 .097
0 . 0 8 9
0 . 0 7 9
0 .065
0 .042

- 0 . 0 1 9
- 0 . 0 7 0
- 0 . 0 3 5
- 0 . 0 3 1
- 0 . 0 3 8

AZIMUTH ANGLE =165.0

ELEVATION FORCE COEFFICIENTS MOMENT COEFFICIENTS
ANGLE NORMAL AXIAL SIDE PITCH ROLL YAW

0 . 0
15.0
30,0
45.0
60.0
75.0
90.0

105.0
120.0
135.0
150.0
165.0
180.0

0 . 0 1 8
- 0 . 0 9 6
- 0 . 1 3 3
- 0 . 1 5 0
- 0 . 1 5 3
- 0 . 1 2 6
- 0 . 1 2 2
- 0 . 1 0 8

0 , 0 6 6
0 .047
0 .034
0 .032

- 0 . 9 4 9
- 0 . 8 7 3
- 0 . 7 5 3
- 0 . 6 6 1
- 0 . 7 6 4
- 0 . 4 5 2

0 .142
0 .980
1 . 4 7 3
1 .575
1 .495
1 .480
1 .523

0 .081
0 .079
0 .075
0 .070
0 .062
0 .052
0 .034
0 .013

- 0 . 0 1 7
- 0 . 0 3 4
- 0 , 0 2 7
- 0 . 0 2 2
- 0 . 0 2 2

0.038
-0,005
-0.047
-0.086
-0.111
-0.120
-0.122
-0.113
-0.011
0.042

-0.047
-0.068
-0.068

0.007
0.009
0.010
0.011
0.010
0.009
0.009
0.008
0.007
0.005
0.001

-0.003
-0.006

0.060
0.060
0.059
0.057
0,056
0.054
0.047
0.037
0.012

-0.020
-0.025
-0.021
-0.021



AZIMUTH ANGLE = 180.0

ELEVATION FORCE COEFFICIENTS
ANGLE NORMAL AXIAL SIDE

MOMENT COEFFICIENTS
PITCH ROLL YAW

O.O
15.0
30.0
45.0
60.0
75.0
90.0

105,0
120.0
135.0
150.0
165.0
180.0

0 . 0 3 0
- 0 . 0 7 0
- 0 . 1 5 1
- 0 . 2 0 1
- 0 , 2 1 6
- 0 . 1 6 1
- 0 . 1 5 3
- 0 . 1 2 2

0 .078
0 .110
0 .058
0 .039
0 .032

- 0 . 9 6 1
- 0 . 8 8 1
- 0 . 7 9 2
- 0 . 5 3 3
- 0 . 6 0 5
- 0 . 5 0 1

0.983
1.831
10600
1.462
1.500
1.521

0.002
0 ,003
0 ,004
0 .004

- 0 . 0 0 4
- 0 , 0 0 7
- 0 . 0 1 0
- 0 . 0 1 1
-0$003

0.001
0.001

- 0 . 0 0 2

- 0 . 0 2 2
- 0 . 0 2 8
- 0 , 0 5 0
- 0 . 1 1 2
- 0 . 1 2 4
- 0 . 1 1 0
- 0 . 1 0 4
- 0 , 0 6 9

0 .049
0 .042

- 0 . 0 2 0
- 0 . 0 3 2
- 0 . 0 3 8

0.001

-0.001
-0.001

0,001
0.001
0.001
0.002
0.002
0.001
0.002

- 0 . 0 0 2

0 .002
0 . 0 0 2
0 .002
0 .001
0.OO1

-0.001
-0.001
-0.002
-0.003


